Related Literature Group 4, design

From Control Systems Technology Group
Revision as of 20:03, 9 May 2021 by 20182838 (talk | contribs)
Jump to navigation Jump to search

Excerpts & citations


  • Females chose to gender-match and to interact with a more realistic VA. Males exhibited little preference for either gender, and a greater preference than females for realistic VAs. Thus, where it is not feasible to gender-match in SSCO, the recommendation is to implement a realistic female VA. [1]
  • Young and attractive female agent positively impacts interest in learning, an older an unattractive male agent does not impact motivation. [2]
  • As research suggests that the combination of an agent’s gender and personality can play an important role in user perceptions and expectations [1, 37], employing a male agent instead may result in some significant differences in user perceptions or ratings of the agent. We encourage future work to investigate how gender and personality of a workplace productivity agent might influence user experience. [3]
  • participants prefer same-gender agents when they are asked to choose their preferred agent as presenter for a multimedia slideshow. [2]
  • We found that the designed characteristics of VAs affects some aspects of user impressions (i.e. personality and trustworthiness) of the VA, while other impressions are not affected (i.e. social ability). We also found that gender matching between the agent and the user affect user impressions. // Gender similarity --> more trustworthy [4]


  1. Payne, J., Szymkowiak, A., Robertson, P., & Johnson, G. (2013). Gendering the machine: Preferred virtual assistant gender and realism in self-service. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8108 LNAI, 106–115.
  2. 2.0 2.1 Shiban, Y., Schelhorn, I., Jobst, V., Hörnlein, A., Puppe, F., Pauli, P., & Mühlberger, A. (2015). The appearance effect: Influences of virtual agent features on performance and motivation. Computers in Human Behavior, 49, 5–11.
  3. Grover, T., Rowan, K., Suh, J., McDuff, D., & Czerwinski, M. (2020). Design and evaluation of intelligent agent prototypes for assistance with focus and productivity at work. International Conference on Intelligent User Interfaces, Proceedings IUI, 20, 390–400.
  4. Akbar, F., Grover, T., Mark, G., & Zhou, M. X. (2018, March 5). The effects of virtual agents’ characteristics on user impressions and language use. International Conference on Intelligent User Interfaces, Proceedings IUI.