PRE2022 3 Group1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 136: Line 136:


===Search patterns===
===Search patterns===
(Luc)
Search procedures for when a man goes overboard already exist. In the IAMSAR manual some of these procedures are already explained. I want to start discussing some of the search patterns described.
 
For different environments and conditions different patterns are reccomended. When the location of the Man overboard is known well, Expanding Square or Sector search is recommended.
 
<br />
 
* Epanding Square search - expanding square search can only be done by one ship at a time. the pattern is starts at the approximate location of the man over board and spirals outwards with course alterations of 90°
 
* Sector Search - this can be done using one vessel, or using a vessel and an aircraft. the metod is used to search a spherical area. the pattern is depicted in .....
 
if the location of the accident is not accurately known. different patterns are reccomended such as sweep search.
 
* Sweep search - this is a pattern used to search a bounded area. the ship zig zags down it.
 
 
IAMSAR also mentions other factors need to be taken into account. If a person falls into the water they will for example be moved away by currents.


===Remote Drone Control===
===Remote Drone Control===
(Luc)
A lot of reasearch has already gone into autonomous drone flight. Take a look at autonomous drone racing for example (https://link.springer.com/article/10.1007/s10514-021-10011-y) . A lot of consumer drones also are capable of atonomous flight, for example DJI has a waypoint system based on GPS coordinates and thier drones are also capable of tracking a moving person/object.


===Communication Systems===
===Communication Systems===
Line 168: Line 183:
==Brainstorm Phase==
==Brainstorm Phase==


=== Possible projects ===
===Possible projects===


====Man over board (MOB) drone====
====Man over board (MOB) drone====
Line 190: Line 205:
'''Some references:''' https://www.nzherald.co.nz/travel/aussie-base-jumpers-two-hour-ordeal-after-parachute-gets-stuck-in-tree/HCN6DYMSSA4ZUBE3GVV2WCTNRQ/, https://www.tmz.com/2022/11/30/base-jumper-crash-cliff-dangling-parachute-death-defying-video-moab-tombstone-utah/
'''Some references:''' https://www.nzherald.co.nz/travel/aussie-base-jumpers-two-hour-ordeal-after-parachute-gets-stuck-in-tree/HCN6DYMSSA4ZUBE3GVV2WCTNRQ/, https://www.tmz.com/2022/11/30/base-jumper-crash-cliff-dangling-parachute-death-defying-video-moab-tombstone-utah/


===Literature study ===
===Literature study===
To determine the state of the art surrounding our project we will do a literature study.
To determine the state of the art surrounding our project we will do a literature study.



Revision as of 13:43, 5 March 2023


Group members
Name Student number Major
Geert Touw 1579916 BAP
Luc van Burik 1549030 BAP
Victor le Fevre 1603612 BAP
Thijs Egbers 1692186 BCS
Adrian Kondanari
Aron van Cauter 1582917 BBT


Project plan

Problem statement and objectives

Scenario:

Weather: Some waves, a breeze but still calm enough for a drone to fly, little rain, nighttime, water is 3 degrees Celsius -> 15-30 minutes until exhaustion and unconsciousness, 30-90 minutes expected survival time.

Ship: Container ship, on the Atlantic ocean, speed: 25 knots (~46 km/h, had to take a detour, were behind schedule, faster than average)

Reason off fall: Dark outside, slippery because some rain, person is alone, person drifts away without major injuries


Who are the users?

Shipping companies. Not cruise ships, only cargo ships and their crew

What do they require?

MoSCoW:

Must have: Sensors to quickly detect a person, communicate with ship

Should have: Resist (bad) weather to a degree

Could have: Life assist systems, communication between person and ship

Won’t have: Ability to take the person to safety

Approach milestones and deliverables

TODO

Task division

Person Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8
Luc Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study (4-5 articles): Search patterns, Remote drone control > necessary equipment
Thijs Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study(4-5 articles): Communication systems > necessary equipment
Geert Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study(4-5 articles):  Influence of cold water, Oceanic Weather
Victor Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study(4-5 articles): Image recognition /sensors > necessary equipment, Take care of the wiki page
Adrian Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study(4-5 articles):  Night time deck procedures > What does the victim have on him/her?
Aron Literature study (4-5 articles)+Subject picking Further Brainstorming and subject refining Literature study(4-5 articles):  Current tech > write a section on the current state of person detection tech in the wiki

State of the art: Literature Study

Search patterns

Search procedures for when a man goes overboard already exist. In the IAMSAR manual some of these procedures are already explained. I want to start discussing some of the search patterns described.

For different environments and conditions different patterns are reccomended. When the location of the Man overboard is known well, Expanding Square or Sector search is recommended.


  • Epanding Square search - expanding square search can only be done by one ship at a time. the pattern is starts at the approximate location of the man over board and spirals outwards with course alterations of 90°
  • Sector Search - this can be done using one vessel, or using a vessel and an aircraft. the metod is used to search a spherical area. the pattern is depicted in .....

if the location of the accident is not accurately known. different patterns are reccomended such as sweep search.

  • Sweep search - this is a pattern used to search a bounded area. the ship zig zags down it.


IAMSAR also mentions other factors need to be taken into account. If a person falls into the water they will for example be moved away by currents.

Remote Drone Control

A lot of reasearch has already gone into autonomous drone flight. Take a look at autonomous drone racing for example (https://link.springer.com/article/10.1007/s10514-021-10011-y) . A lot of consumer drones also are capable of atonomous flight, for example DJI has a waypoint system based on GPS coordinates and thier drones are also capable of tracking a moving person/object.

Communication Systems

(Thijs)

Influence of cold water and oceanic weather

(Geert)

Image recognition/sensors

(Victor)

Night time deck Procedures

(Adrian)

Current Person in water detection tech


Design phase

Components:

Sensors

Communication Equipment

Drone


Brainstorm Phase

Possible projects

Man over board (MOB) drone

During the MOB protocol, the most challenging part is locating the victim. This can prove to be especially difficult during stormy weather or night time. Creating a drone that is equipped with adequate sensors to locate the victim and life saving equipment would drastically increase the chances of survival for a man overboard. Another problem that our drone needs to tackle is providing appropriate care for the possibilities of drowning, hypothermia or any other injury.

User: Ship's crew, rescue teams (coast guard); Problem: MOB, Requirement: Locate and provide appropriate care for the victim.

References: https://www.ussailing.org/news/man-overboard-recovery-procedure/, https://doi.org/10.1016/j.proeng.2012.06.236

Manure Silo suffacation

Manure Silo's need to be cleaned. When this is done, people can sufficate in the toxic gasses released by the manure (even if the silo is almost empty). We want to develop a robot that alarms people when conditions become dangerous, and if this person is not able to leave the silo in time, supply clean air to them.

User: Farmers, Problem: Manure silo suffication, Requirement: Supply clean air before suffication.

Some references: https://www.ad.nl/binnenland/vader-beukt-wanhopig-in-op-silo-maar-zoon-bezwijkt~a4159109/, https://www.mestverwaarding.nl/kenniscentrum/1309/twee-gewonden-bij-ongeval-met-mestsilo-in-slootdorp

Extreme Sports Accidents

Thrillseekers are often a bit reckless when it comes to safety. We want to design a flying drone that can help people get out of sticky situations during parachute-jumping, base-jumping or even rock-climbing. The victim will be able to attach themselves to the drone using the parachute equipment or rock-climbing equipment and the drone will put them safely on the ground.

User: Extreme sporters, rescue teams, Problem: Dangerous accidents, Requirement: Can safely attach to people and put them on the ground.

Some references: https://www.nzherald.co.nz/travel/aussie-base-jumpers-two-hour-ordeal-after-parachute-gets-stuck-in-tree/HCN6DYMSSA4ZUBE3GVV2WCTNRQ/, https://www.tmz.com/2022/11/30/base-jumper-crash-cliff-dangling-parachute-death-defying-video-moab-tombstone-utah/

Literature study

To determine the state of the art surrounding our project we will do a literature study.

Disaster robotics

This article gives an overview of rescue robotics and some characteristics that may be used to classify them. The article also contains a case study of the Fukushima-Daiichi Nuclear power plant accident that gives an overview of how some robots where used. On top of that the article gives some challenges that are still present with rescue robotics.

https://link.springer.com/chapter/10.1007/978-3-319-32552-1_60

A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions

This article gives an overview of the use of unmanned surface vehicles and gives some recommendations around USV's.

https://www.mdpi.com/1424-8220/19/3/702?ref=https://githubhelp.com

Underwater Research and Rescue Robot

This article is about an underwater rescue robot that gives necessary feedback in rescuing missions. This underwater robot has more computng power than the current underwater drones and reduces delay by the use of ethernet cable.

https://www.researchgate.net/publication/336628369_Underwater_Research_and_Rescue_Robot

Mechanical Construction and Propulsion Analysis of a Rescue Underwater Robot in the case of Drowning Persons

This article is about a unmanned life-saving system that recovers conscious or unconscious people. This prevents other people from getting themselves in a dangerous situation by trying to save others. This drone is not fully autonomous since it needs to be operated by humans.

https://www.mdpi.com/2076-3417/8/5/693

Design and Dynamic Performance Research of Underwater Inspection Robots

Power plants along the coastline use water as cooling water. The underwater drone presented in this paper is used to research water near power plants and clean filtering systems to optimize the efficiency of the powerplant.

https://www.hindawi.com/journals/wcmc/2022/3715514/

Semi Wireless Underwater Recue Drone with Robotic Arm

This article highlights the challenges concerning underwater rescue of people and valuable object. The biggest challenge is wireless communication due to the harsh environment. The drone is also equipped with a robotic arm to grab objects and a 4K camera with foglights to navigate properly underwater.https://www.researchgate.net/publication/363737479_Semi_Wireless_Underwater_Rescue_Drone_with_Robotic_Armhttps://www.researchgate.net/publication/363737479_Semi_Wireless_Underwater_Rescue_Drone_with_Robotic_Arm

Rescue Robots and Systems in Japan

This paper discusses the development of intelligent rescue systems using high-information and robot technology to mitigate disaster damages, particularly in Japan following the 1995 Hanshin-Awaji earthquake. The focus is on developing robots that can work in real disaster sites for search and rescue tasks. The paper provides an overview of the problem domain of earthquake disasters and search and rescue processes.

https://ieeexplore.ieee.org/abstract/document/1521744

Two multi-linked rescue robots: design, construction and field tests

This paper proposes the design and testing of two rescue robots, a cutting robot and a jack robot, for use in search and rescue missions. They can penetrate narrow gaps and hazardous locations to cut obstacles and lift heavy debris. Field tests demonstrate their mobility, cutting, and lift-up capacity, showing their potential use in rescue operations.

https://www.jstage.jst.go.jp/article/jamdsm/10/6/10_2016jamdsm0089/_pdf/-char/ja

The current state and future outlook of rescue robotics

This paper surveys the current state of robotic technologies for post-disaster scenarios, and assesses their readiness with respect to the needs of first responders and disaster recovery efforts. The survey covers ground and aerial robots, marine and amphibious systems, and human-robot control interfaces. Expert opinions from emergency response stakeholders and researchers are gathered to guide future research towards developing technologies that will make an impact in real-world disaster response and recovery.

https://doi.org/10.1002/rob.21887

Mobile Rescue Robot for Human Body Detection in Rescue Operation of Disaster

The paper proposes a mobile robot based on a wireless sensor network to detect and rescue people in emergency situations caused by disasters. The robot uses sensors and cameras to detect human presence and condition, and communicates with a network of other robots to coordinate rescue efforts. The goal is to improve the speed and efficiency of rescues in order to save more lives.https://d1wqtxts1xzle7.cloudfront.net/58969822/12_Mobile20190420-67929-tn7req-libre.pdf?1555765880=&response-content-disposition=inline%3B+filename%3DMobile_Rescue_Robot_for_Human_Body_Detec.pdf&Expires=1676230737&Signature=YQXJqYheT6M0hsHXSWDx4FbuCauvv9o9uvDR1Hl8dJL~SmI~KObXAhXbq7dDYZAMLhsydh7ipP5RBOayNkzsM~K0xP7pcXLmOKcW3-WFdt1aTyHvQWeG5hUKzhb5KLaVAj4Frfb313Yi5oyhFaHVb~ODSxbtpN73SGd3YE3UouzuexfeGSVqFyWTWi-3qMqMIQ3qfUKGiBF24QfyArHlj9mKkq8gVItdJsAS9OGBUGeBQaf~8j37WsIauoABw8cO5V73RFxhfLR~ehXXMgJegTRxzwT1tBMhE14OVMK~PkfcpYSAVkHFi3gqf~sawW4SFIut7MetNdUcKfcAwHEBHA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Mine Rescue Robot System – A Review

Underground mining has a lot of risks and it is a very difficult task for rescuers to reach trapped miners. It is therefore great to deploy a wireless robot in this situation with gas sensors and cameras, to inform rescuers about the state of the trapped miners.

https://www.sciencedirect.com/science/article/pii/S187852201500096X

Ethical concerns in rescue robotics: a scoping review

We also have to take the ethics of rescue robots into account. There are seven core ethical themes: fairness and discrimination; false or excessive expectations; labor replacement; privacy; responsibility; safety; trust

https://link.springer.com/article/10.1007/s10676-021-09603-0

Rescue robots for mudslides: A descriptive study of the 2005 La Conchita mudslide response

Robots assisted the rescuers who responded to the 2005 mudslide in La Conchita. The robots were waterproof and could thus be deployed in wet conditions, but they failed to navigate through the rubble, vegetation and soil. The paper thus suggests that rescue robots should be trained in a variety of environments, and advises manufacturers to be more conservative with their performance claims.

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20207

Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots

The 2011 earthquake and tsunami in Japan resulted in a meltdown of the Fukushima nuclear power plant. Due to the radiation levels, robots were deployed because it was too dangerous for humans. First various issues needed to be resolved, like the ability of the robot’s electrical components to withstand radiation. The ability to navigate and communicate was tested at a different nuclear powerplant similar to Fukushima.

https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21439

A Coalition Formation Algorithm for Multi-Robot Task Allocation in Large-Scale Natural Disasters

Robots are more reliable then humans in a lot of cases. This paper discusses a bit of prior research concerning older algorithms and looks into a new algorithm considering multi-robot task allocation is rescue situations. These algorithms should take a lot into account, like sensors needed for problems. They compare their algorithm with older ones in multiple cases like different problem sizes.

https://www.researchgate.net/publication/316283106_A_Coalition_Formation_Algorithm_for_Multi-Robot_Task_Allocation_in_Large-Scale_Natural_Disasters


Appendix

Logbook

Week Name Work done & hours spent Total hours
1 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
2 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
3 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
4 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
5 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
6 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
7 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter
8 Geert Touw
Luc van Burik
Victor le Fevre
Thijs Egbers
Adrian Kondanari
Aron van Cauter

Refrences