PRE2020 3 Group 5 Summaries: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 19: Line 19:
Paper <ref name="EarlyDefibrillation">[https://doi.org/10.1161/01.cir.0000028148.62305.69] Capucci, A., Aschieri, D., Piepoli, M. F., Bardy, G. H., Iconomu, E., & Arvedi, M. (2002). Tripling Survival From Sudden Cardiac Arrest Via Early Defibrillation Without Traditional Education in Cardiopulmonary Resuscitation. Circulation, 106(9), 1065–1070. </ref> <br />
Paper <ref name="EarlyDefibrillation">[https://doi.org/10.1161/01.cir.0000028148.62305.69] Capucci, A., Aschieri, D., Piepoli, M. F., Bardy, G. H., Iconomu, E., & Arvedi, M. (2002). Tripling Survival From Sudden Cardiac Arrest Via Early Defibrillation Without Traditional Education in Cardiopulmonary Resuscitation. Circulation, 106(9), 1065–1070. </ref> <br />
Summary:  
Summary:  
Early defibrillation is the most important intervention affecting survival from sudden cardiac arrest (SCA). To improve public access to early defibrillation, the Italian research project Piacenza Progetto Vita (PPV) formed the first system of out-of-hospital early defibrillation by first-responder volunteers.  
Early defibrillation is the most important intervention affecting survival from sudden cardiac arrest (SCA). To improve public access to early defibrillation, the Italian research project Piacenza Progetto Vita (PPV) formed the first system of out-of-hospital early defibrillation by first-responder volunteers.  



Revision as of 20:10, 14 March 2021

Main page


Week 1 Summaries

Sven:
Paper [1]
Summary:
Paper [2]
Summary:
Paper [3]
Summary:
Paper [4]
Summary:
Paper [5]
Summary:

Lucas:
Paper [6]
Summary:

Early defibrillation is the most important intervention affecting survival from sudden cardiac arrest (SCA). To improve public access to early defibrillation, the Italian research project Piacenza Progetto Vita (PPV) formed the first system of out-of-hospital early defibrillation by first-responder volunteers.

Sudden cardiac arrest (SCA) claims an estimated 350 000 lives per year in the United States, representing a major public health problem. The vast majority of SCA is caused by ventricular fibrillation (VF) (85%), in which early defibrillation is the most important intervention affecting survival. After 10 minutes, very few resuscitation attempts are successful (0% to 2%). The major determinants of survival after witnessed out-of-hospital SCA include bystander initiation of cardiopulmonary resuscitation (CPR) and the rapidity with which defibrillation is accomplished. Unfortunately, most victims do not have immediate access to prompt, effective treatment, and too much time elapses before the defibrillator arrives, if it arrives at all. The approach focusses almost exclusively on improving defibrillation response times with the use of lay volunteers. The role of traditional CPR in SCA survival has been recently disputed, given both the poor CPR skill performance and retention by people without (much/any) experience with providing medical help. These volunteers all had followed a 4 hour session with theoretical and practical lessons. AEDs were placed at several fixed locations and at a few moving vehicles (e.g. police) and the volunteers were notified whenever an accident occurred in their region. The outcome of the research is positive and shows much future potential as the use of AEDs by nonmedical volunteers enabled early defibrillation and tripled the survival rate for out-of-hospital SCA.


Paper [7]
Summary:


Paper [8]
Summary:


Paper [9]
Summary:


Paper [10]
Summary:


Bram:
Paper [11]
Summary:
Paper [12]
Summary:
Paper [13]
Summary:
Paper [14]
Summary:
Paper [15]
Summary:

Stijn:
Paper [16]
Summary:
Paper [17]
Summary:
Paper [18]
Summary:
Paper [19]
Summary:
Paper [20]
Summary:

Pepijn:
Paper [21]
Summary:
Paper [22]
Summary:
Paper [23]
Summary:
Paper [24]
Summary:
Paper [25]
Summary:

References

  1. [1] Kardasz, P., & Doskocz, J. (2016). Drones and Possibilities of Their Using. Journal of Civil & Environmental Engineering, 6(3), 1–7.
  2. [2] Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.
  3. [3] Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in Society, 45, 83–90.
  4. [4] Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60–69.
  5. [5] Balasingam, M. (2017). Drones in medicine-The rise of the machines. International Journal of Clinical Practice, 71(9), e12989.
  6. [6] Capucci, A., Aschieri, D., Piepoli, M. F., Bardy, G. H., Iconomu, E., & Arvedi, M. (2002). Tripling Survival From Sudden Cardiac Arrest Via Early Defibrillation Without Traditional Education in Cardiopulmonary Resuscitation. Circulation, 106(9), 1065–1070.
  7. [7] Hoz, S. S., Aljuboori, Z. S., Dolachee, A. A., Al-Sharshahi, Z. F., Alrawi, M. A., & Al-Smaysim, A. M. (2020). Fatal Penetrating Head Injuries Caused by Projectile Tear Gas Canisters. World Neurosurgery, 138, e119–e123.
  8. [8] Kuprin, D. S. (2017). Physical–chemical explanation of fire-fighting efficiency of FHF (fast-hardening foam) based on structured silica particles. Journal of Sol-Gel Science and Technology, 81(1), 36–41.
  9. [9] Schlag, C. (2013). The New Privacy Battle: How the Expanding Use of Drones Continues to Erode Our Concept of Privacy and Privacy Rights. Pittsburgh Journal of Technology Law and Policy, 13(2), 1–23.
  10. [10] Hashemi, S. R., Esmaeeli, R., Aliniagerdroudbari, H., Alhadri, M., Alshammari, H., Mahajan, A., & Farhad, S. (2019). New Intelligent Battery Management System for Drones. Volume 6: Energy, 1–7.
  11. [11] Aydin, B. (2019). Public acceptance of drones: Knowledge, attitudes, and practice. Technology in Society, 59, 101180.
  12. [12] Sherstjuk, V., Zharikova, M., & Sokol, I. (2018). Forest Fire-Fighting Monitoring System Based on UAV Team and Remote Sensing. 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), 663–668.
  13. [13] Merkert, R., & Bushell, J. (2020). Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. Journal of Air Transport Management, 89, 101929.
  14. [14] Rosser, J. C., Vignesh, V., Terwilliger, B. A., & Parker, B. C. (2018). Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS : Journal of the Society of Laparoendoscopic Surgeons, 22(3), e2018.00018.
  15. [15] EUCHI, J. (2020). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chinese Journal of Aeronautics, 1–9.
  16. [16] Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous drones. Nature, 521(7553), 460–466.
  17. [17] Khan, M. N. H., & Neustaedter, C. (2019). An Exploratory Study of the Use of Drones for Assisting Firefighters During Emergency Situations. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–14.
  18. [18] Restas, A. (2015). Drone Applications for Supporting Disaster Management. World Journal of Engineering and Technology, 03(03), 316–321.
  19. [19] Liu, Z., Kim, A. K., & Carpenter, D. (2007). A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Safety Journal, 42(1), 25–42.
  20. [20] Aydin, B., Selvi, E., Tao, J., & Starek, M. J. (2019). Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting. Drones, 3(1), 17–32.
  21. [21] Moore, J. (2013). U.S. Patent No. 2013/0134254. Maryland
  22. [22] W, G.Y. & K, K.W. (2019). U.S. Patent No. 10,413,763. Korea
  23. [23] Anania, E. C., Rice, S., Pierce, M., Winter, S. R., Capps, J., Walters, N. W., & Milner, M. N. (2019). Public support for police drone missions depends on political affiliation and neighborhood demographics. Technology in Society, 57, 95–103.
  24. [24] Feeney, Matthew, Surveillance Takes Wing: Privacy in the Age of Police Drones (December 13, 2016). Cato Institute Policy Analysis No. 807, Available at SSRN: https://ssrn.com/abstract=2919439
  25. [25] Manjikian, M. & Army War College (U.S.). (2017). A Typology of Arguments about Drone Ethics. Amsterdam, Netherlands: Amsterdam University Press.