PRE2019 3 Group1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 211: Line 211:
This article is about a research to identify the factors at the levels of the socio-ecological framework, and their interaction, that influence the use of community assets among people with physical disabilities and community stakeholders. It calls for stronger enforcement of the existing legal framework through articulated work between different stakeholders, so that people with disabilities can enjoy community assets.
This article is about a research to identify the factors at the levels of the socio-ecological framework, and their interaction, that influence the use of community assets among people with physical disabilities and community stakeholders. It calls for stronger enforcement of the existing legal framework through articulated work between different stakeholders, so that people with disabilities can enjoy community assets.


== Logbook & planning==
==Planning==
{| class="wikitable" | border="1" style="border-collapse:collapse"
{| class="wikitable" | border="1" style="border-collapse:collapse"
! style="font-weight:bold"; |  
! style="font-weight:bold"; |  

Revision as of 20:07, 19 February 2020

Group 1

Group members Student number Study Email
C.C. Vreezen 1011476 Medical science and technology c.c.vreezen@student.tue.nl
J. Voet 1386794 Psychology and Technology j.voet@student.tue.nl
F.W.H.M. Ligtenberg 1237054 Biomedical engineering f.w.h.m.ligtenberg@student.tue.nl
J.A. van Leeuwen 1261401 Applied Physics j.a.v.leeuwen@student.tue.nl
P. Gort 1253042 Applied Physics p.gort@student.tue.nl

Problem statement

“Counteract the tremors in the arm of Parkinson patients in rest with the use of a sleeve that can sense the tremor force and adjust its counterforce accordingly by automatically adjusting the spring force.”

Objectives

- Counteract the tremors of Parkinson patients

- Should change the everyday life behaviour in a positive way

- Should be life improving

- Design should be appealing to age demographic (50+)

Users

People who are suffering from Parkinson's disease, which causes them to experience constant tremors in their arms.

Product

A sleeve that actively counteracts the constant tremors in the arms of people suffering from Parkinson's disease.

Requirements

- Stabalizes tremors

- Lightweight

- Long Endurance

- Strong quality

- Comfort

- Not intimidating to use

Approach

- Going to users

- literature studies

Milestones/Planning

- Week 3: Finish literature study

- Week 4: Finish the description of the users and Parkinson's disease and an explanation of the relevance of the project

- Week 4, 5 & 6: Work on the model and the design of the sleeve

- Week 7: Organize & finish the wiki page

- Week 8: Presentation

Deliverable

- Wiki page

- Model

- Sleeve design

- Presentation

Literature study

Femke

Breen, J. S. (2015). The exoskeleton generation – disability redux. Disability & Society, 30(10), 1568–1572. https://doi.org/10.1080/09687599.2015.1085200 https://www-tandfonline-com.dianus.libr.tue.nl/doi/full/10.1080/09687599.2015.1085200

This article talks about the implications with on the one side the increasing acceptance of disability, and on the other side the rapid scientific developments in the medical field. If you could just function as a non-disabled person again with the help of an exoskeleton, would you still be able to choose to not use this medical advancement? Would you still have a free choice in this, or are you frowned upon when you do not want to “fix” your disability?

Association for Computing Machinery (ACM). (2020, 02 04). code-of-ethics. Opgehaald van https://www.acm.org/: https://www.acm.org/code-of-ethics

This website states the ethical codes for computing machinery. Exoskeletons would violate some of these codes, such as 1.1 "Be fair and take action not to discriminate" and 1.4 "Contribute to society and human well-being"

1. Greenbaum, Dov., 'Ethical, Legal and Social Concerns Relating to Exoskeletons.' ACM SIGCAS Computers and Society 45, no. 3 (2015): 234-239. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2843109

This article talks about ethical implications such as financial availability (with exoskeletons costing as much as a luxury car), and the dehumanization of soldiers or workers using these exoskeletons (overworking employees and dehumanizing warfare and the humans that fight in that war)

Pauline Maurice, Ludivine Allienne, Adrien Malaisé, Serena Ivaldi. Ethical and Social Considerations for the Introduction of Human-Centered Technologies at Work. IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), 2018, Genova, Italy. hal-01826487 https://hal.archives-ouvertes.fr/hal-01826487/document

This research paper talks about the importance of, aside from existing ethical guidelines, complementing this with an analysis of the social impact of this exoskeleton technology. They studied the opinions of factory workers (so people who are more at risk of physical injuries) and people outside this environment

Bissolotti, L., Nicoli, F., & Picozzi, M. (2018). Domestic Use of the Exoskeleton for Gait Training in Patients with Spinal Cord Injuries: Ethical Dilemmas in Clinical Practice . Frontiers in Neuroscience , Vol. 12, p. 78. Retrieved from https://www.frontiersin.org/article/10.3389/fnins.2018.00078 https://www.frontiersin.org/articles/10.3389/fnins.2018.00078/full

This research paper evaluates some ethical questions about the domestic use of a robotic exoskeleton (ReWalk Robotics) for gait assistance in patients with a spinal cord injury. “This device is presently FDA and EC market approved and it is now available”. It talks about ethical concerns like financial coverage because of personal resources, but learning to walk again is of high priority for patients

(Handig boek over “lower limb wearable robotics” en welke onderdelen het allemaal nodig heeft en wat daar de challenges van zijn: https://app.knovel.com/web/toc.v/cid:kpWESDCA03/viewerType:toc//root_slug:wearable-exoskeleton-systems?kpromoter=marc)

Pim

One yet existing exoskeleton is the RUPERT (Robotic upper extremity repetitive trainer). This device has 5 actuated degrees of freedom which are driven by compliant and safe pneumatic (operated by air or gas under pressure.) muscle actuators. This helps with shoulder elevation, elbow extension, forearm supination (turning your arm outwards) and humeral external rotation. There is no gravity compensation for this exoskelet. The system is lightweight and uses a PID-based controller combined with an ILC (iterative learning controller) controller. (Balasubramanian, 2008) https://ieeexplore.ieee.org/document/4625154

The state of the art of currently available lower limb assistive exoskeletons is presented in this paper. The functional abilities and the mechanism designs are described. In conclusion, there is still a lot to improve on assistive exoskeletons like choosing the proper and effective tools methods, developing user friendly interfaces and making the devices more affordable. (Kapsalyamov, 2019) https://ieeexplore.ieee.org/abstract/document/8759880

To operate a robotic exoskeleton a control system is needed to monitor an output of electrical activity sensors which are disposed on the human operator. The control system reacts automatically an the step the human makes, choosing from a plurality of different modes. Eventually the operating mode selected will determine the response the system will have to make. (Wilkinson, 2014) https://patents.google.com/patent/US9339396B2/en

The lower-limb exoskeleton is designed to provide weight-bearing assistance for strength and endurance augmentation. It has 10 degrees of freedom. A trajectory learning scheme based on RL (reinforcement learning) and DMP (dynamic movement principles) is present to give assistance to human walking. A two-level plan is presented, the first one concerns the ZMP (zero-moment-point) within the ankle joint for the supported leg. For this purpose the inverted pendulum approximation is utilized, this is done with the so called locomotion parameters. The second level models the joint trajectories learned by the DMP. The RL is now adopted to learn these trajectories so that it can eliminate all the uncertainties in the joint space. The experiments show that it is an effective method for minimizing disturbances and uncertainties. (Yuan, 2019) https://dr.ntu.edu.sg/handle/10356/88973

The robots used for physical rehabilitation allow the patient a compliance and a quantitative, more accurate monitoring of the performance of the patient. However when the patients go back home, it is logistically not possible to keep this same kind of support. Recent research in soft materials for designing robotic devices can make this possible. These are made of fabric and elastomers, is a promising way of delivering power and being ergonomic. Features like assisting the elbow joint and compensating the gravitational forces with a controller are developed and evaluated. It is tested on both the kinetics and kinematics of healthy people. (Xiloyannis, 2019) https://ieeexplore.ieee.org/abstract/document/8718029

bibliography

Balasubramanian, S. (2008). RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions. Vancouver, BC, Canada: IEEE.

Kapsalyamov, A. (2019). State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. Nazarbayev: IEEE.

Wilkinson, L. J. (2014). Robotic exoskeleton multi-modal control system . US: Harris Corp.

Xiloyannis, M. (2019). Development and validation of a soft robotic exosuit for assistance of the upper limbs. Singapore: Nanyang Technological University.

Yuan, Y. (2019). DMP-based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning. Liverpool: IEEE.

Jan

The IHMC exoskeleton is a suit that can be used to gain more strength. The first prototypes were targeted for walking assistance for persons with lower paralysis. The goal is to successfully enable a person to walk a straight line of a distance of 15 feet without human assistance. https://ieeexplore.ieee.org/abstract/document/5152394

In this paper the development of a lower limb exoskeleton is described. These twin legs are powered by pneumatic muscle actuators. These are low mass high power to weight and volume actuation system. These “muscles” being pneumatic means that a more natural muscle like feeling is achieved. This exoskeleton is mostly used for rehabilitation. https://ieeexplore.ieee.org/abstract/document/1639137

CRUX: compliant robotic upper-extermity exosuit. This exosuit is a lightweight (1.3 kg), has flexible multi-joitn design for portable augmentation. The CRUX also maintains the ability to freely move why wearing it. Mostly used for physical therapy and in extreme environments. It is mostly used for people suffering from stroke. It can help these people with the rehabilitation. Most of these rehabiliations now a days succeed. CRUX can provide a solution for this. https://ieeexplore.ieee.org/abstract/document/8009482

In this article a exosuit is talked about that can help people with hip problems. It uses a backpack frame to connect to the torso. Beneftis of using this method is that exosuits eliminate the problem regarding the alignment of a rigid frame to the biological joints, furthermore the inertia of the joints can be extremely low, meaning less muscle power has to be used. A spooled-webbing of actuators is attached onto the back of the user. These actuators can assist the user. Due to this mechanics more torque is achieved which means that for the same movement 30% less power is needed. https://www.sciencedirect.com/science/article/abs/pii/S0921889014002103

In this article the biomechanical and physiological effects of a multi-joint soft exosuit are assessed. This exosuit can apply a assisting torque to the hip and ankle joints during walking. This study has looked at the effects of the exosuit on the characteristics of the movement of humans. It appeared that the suit is able to support most of the power that is needed to walk. However there is a decline in kinematic performance with this suit on. This is technical limitation. https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0150-9

bibliography

Hian Kai Kwa (2009), Development of IHMC Mobility Assist Exoskeleton, IEEE

Costa, N. (2006), Control of a Biomimetic "Soft-actuated" 10DoF Lower Body Exoskeleton, Pisa, Italy, IEEE

Lessard, S (2017), CRUX: A compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation, Londen, UK, 2017

Asbeck, Alan T. (2015), Soft exosuit for hip assistance, Robotcs and Autonomous Systems

Panizzolo, Fausto A. (2016), A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking, Journal of NeuroEngineering and Rehabilitation

Jorn

Chen, B (2017) A wearable exoskeleton suit for motion assistance to paralysed patients, Journal of Orthopaedic Translation, https://doi.org/10.1016/j.jot.2017.02.007

This is a study performed in order to help, the ever increasing amount of, paralysed patients to regain control over their limbs using a wearable exoskeleton

H. Kobayashi, H. Suzuki, H. Nozaki and T. Tsuji, "Development of Power Assist System for Manual Worker by Muscle Suit," RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, 2007, pp. 332-337. https://ieeexplore.ieee.org/document/4415104

This paper researches the application of a ‘muscle suit’ that will provide muscular support for manual workers. If the application in this scene will succeed then the muscle suit can be taken further to help the elderly or paralysed patients. But as these categories inquire more risks it is necessary to test it on manual workers beforehand.

R. Auberger, C. Breuer-Ruesch, F. Fuchs, N. Wismer and R. Riener, "Smart Passive Exoskeleton for Everyday Use with Lower Limb Paralysis: Design and First Results of Knee Joint Kinetics," 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, 2018, pp. 1109-1114. https://ieeexplore.ieee.org/abstract/document/8488119

This paper introduces a new orthotic system that supports people with lower limb paralysis in their everyday life.

B. Dellon and Y. Matsuoka, "Prosthetics, exoskeletons, and rehabilitation [Grand Challenges of Robotics]," in IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 30-34, March 2007. https://ieeexplore.ieee.org/abstract/document/4141030

The paper briefly discusses the history of artificial limbs and describes present prosthetics, exoskeletons and robotic rehabilitation and the challenges in prosthetics and exoskeletons

M. Aach, O. Cruciger, M. Sczesny-Kaiser, O. Höffken, R. Ch. Meindl, M. Tegenthoff, P. Schwenkreis, Y. Sankai, T. A. Schildhauer, Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study, The Spine Journal, Volume 14, Issue 12, 2014, Pages 2847-2853, ISSN 1529-9430, https://doi.org/10.1016/j.spinee.2014.03.042.

This research tested if the HAL exoskeleton is safe and whether it improves functional mobility. The patient sample consisted of eight patients with chronic spinal cord injury. The results showed highly significant improvements to the functional mobility without the exoskeleton in the end.

Chantal

Lee, R. C. H., Hasnan, N., & Engkasan, J. P. (2017). Characteristics of persons with spinal cord injury who drive in Malaysia and its barriers: a cross sectional study. Spinal Cord, 56(4), 341–346. https://doi.org/10.1038/s41393-017-0034-2 In this article the importance of the availability to drive after obtaining a physical impairment for SCI is described. Also it is stated that driving is a very important factor for rehabilitation. It is explained that there are various reasons not for driving with a physical impairment.

Zuk, M. (2019). Autonomy - a way for loneliness. analysis of the experience of loneliness of people with physical disabilities. Autonomy, 1633-1640. https://www.ncbi.nlm.nih.gov/pubmed/31586975 This article talks about the importance of autonomy as valuable asset in the lives of societies and individuals and causing the problem of loneliness. The aim of the article is the characteristics of psychological mechanisms accompanying the experience of loneliness by people with mobility disabilities.

Plus, M. (2020). Disabilities. Geraadpleegd op 13 februari 2020, van https://medlineplus.gov/disabilities.html This article talks about the difficulties and limits of the impaired in normal daily lifestyle activities. It also explains the capabilities of Mobility impaired.

Bray, N., Edwards, R. T., Squires, L., & Morrison, V. (2019). Perceptions of the impact of disability and impairment on health, quality of life and capability. BMC Research Notes, 12(1). https://doi.org/10.1186/s13104-019-4324-y This article describes a research project that examines student perceptions of what it would be like to live with a physical or sensory impairment, and how adaptation influences health and quality of life. Mobility impairment is perceived to have the largest impact on health status.

Toro-Hernandez, M. L., Villa-Torres, L., Mondragón-Barrera, M. A., & Camelo-Castillo, W. (2020). Factors that influence the use of community assets by people with physical disabilities: results of participatory mapping in Envigado, Colombia. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-8285-9 This article is about a research to identify the factors at the levels of the socio-ecological framework, and their interaction, that influence the use of community assets among people with physical disabilities and community stakeholders. It calls for stronger enforcement of the existing legal framework through articulated work between different stakeholders, so that people with disabilities can enjoy community assets.

Planning

What has to be done Person(s)
Week 3
  • Tutor meeting 2
  • Review of previous week
  • Starting on introduction
  • Making the planning
  • Contacting people for interviews
  • Updating wiki
  • Finishing self study
  • Finishing literature
  • All
  • All
  • Femke
  • Jan
  • Pim
  • Jorn
  • Chantal, Jorn, Jan
  • All
Week 4
  • Tutor meeting 3
  • Describe different users
  • Explain why our project is relevant
  • Explain what Parkinson is (finish introduction)
  • All
  • Chantal, Jan
  • Pim, Jorn
  • Femke, Chantal, Jorn
Week 5
  • Tutor meeting 4
  • Start working on model
  • Start working on design
  • All
  • All
  • All
Week 6
  • Tutor meeting 5
  • Finishing model
  • Finishing design
  • All
  • All
  • All
Week 7
  • Tutor meeting 6
  • Putting everything on wiki
  • Checking for fault on wiki
  • All
  • All
  • All
Week 8
  • Finshing the wiki
  • Prepare presenation
  • All
  • All