Mobile Robot Control 2024 Ultron:Solution 1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
(solution for exercise 1)
Tag: 2017 source edit
 
No edit summary
Line 16: Line 16:
#*The control loop continues executing as long as the robot is properly connected 'io.ok()' and the  'move ' flag is 'true'.
#*The control loop continues executing as long as the robot is properly connected 'io.ok()' and the  'move ' flag is 'true'.
#*Once the 'move' flag is set to 'false' , the control loop stops executing, effectively halting the robot's motion.[[File:Execise1 Hao.png|thumb]]
#*Once the 'move' flag is set to 'false' , the control loop stops executing, effectively halting the robot's motion.[[File:Execise1 Hao.png|thumb]]
Exercise2
Hao
# [[File:Exercise2-1 Hao.png|thumb]]In map1 the robot can stop as the designed purpose.
# [[File:Exercise2-2 Hao.png|thumb]]In map2 the robot stopped when detected the wall on the right side with distance<=0.2

Revision as of 12:27, 30 April 2024

Exercise1

Hao:

  1. Boolean Flag:
    • A boolean flag named 'move ' is used to control whether the robot should continue moving or stop.
    • It is initialized to 'true', indicating that the robot is initially allowed to move.
  2. Obstacle Detection:
    • The program continuously reads laser sensor data inside the control loop.
    • If any distance measurement from the laser scan is less than 0.2, an obstacle is detected.
  3. Stopping Action:
    • When an obstacle is detected, the 'move ' flag is set to 'false'.
    • Setting 'move ' to 'false' indicates that the robot should stop moving.
    • Additionally, a stop command 'io.sendBaseReference(0, 0, 0)' is sent to the base controller immediately after detecting the obstacle.
  4. Control Loop Condition:
    • The control loop continues executing as long as the robot is properly connected 'io.ok()' and the 'move ' flag is 'true'.
    • Once the 'move' flag is set to 'false' , the control loop stops executing, effectively halting the robot's motion.
      Execise1 Hao.png

Exercise2

Hao

  1. Exercise2-1 Hao.png
    In map1 the robot can stop as the designed purpose.
  2. Exercise2-2 Hao.png
    In map2 the robot stopped when detected the wall on the right side with distance<=0.2