Mobile Robot Control 2023 R2-D2

From Control Systems Technology Group
Revision as of 23:49, 27 June 2023 by F.geister@student.tue.nl (talk | contribs) (Introcution change)
Jump to navigation Jump to search

Group members:

Name student ID
Ismail Elmasry 1430807
Carolina Vissers 1415557
John Assad 1415654
Jelle Cruijsen 1369261
Florian Geister 1964429
Omar Elba 1492071

Design Presentation:

File:MRC Design.pdf Presentation pdf:


Introduction

The main challenge is to design, structure and implement, later execute, a working programm for a mobile robot that takes a starting sequence as an input to serve tables in a restaurant according to that sequence of tables to serve.

In order to do that, the course provided us, beside lectures, with exercises to get properly introduced to the robot simulation environment, the robot itself, as well as programming in general in C++. After a first introduction to the course, we started with a 'Don't crash' exercise to have a proper tool in hand for the robot to safely move around an environment. The next was the 'A*-algorithm' to plan and find a specific goal in a given grid. An introduction to an 'Open Space Approach' exercise We then finished with the 'Localizaion' exercise to let the robot know where it is in a given environment.

The main objective is to deliver orders to a specific table in a restaurant environment. For this, it needs to get the table sequence, then plan the path to the required table, drive to the table, avoid any obstacles within driving and then deliver the the order by driving near the table, facing it and giving a sound signal. This process must then be repeated.

For the challenge, requirements are set in advance. That includes to neither touch walls or obstacles like objects or people, visit the tables in the given order and also within 10 minutes. The maximum speed is set to 0.5 m/s translational and 1.2 rad/s rotational.

As a bonus, detected static and dynamic objects should be detected and presented in the world model of the robot.

Main Part


Strategy

Software Architecture


Robustness Restaurant Challenge



Conclusion