Embedded Motion Control 2017 Group 10: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 80: Line 80:
===''Functions''===
===''Functions''===
The functions are categorized in three different levels of complexity: Low, Mid and High level. An overview of the functions is given in Figure 2.
The functions are categorized in three different levels of complexity: Low, Mid and High level. An overview of the functions is given in Figure 2.
[[File:Interface picture.png|thump|left|600px|alt=Interface diagram group 10.|Figure 2: Function overview. The functions are grouped based on complexity as well as input/output type.]]
[[File:Interface picture.png|thump|center|600px|alt=Interface diagram group 10.|Figure 2: Function overview. The functions are grouped based on complexity as well as input/output type.]]


===''Components''===
===''Components''===

Revision as of 10:40, 10 May 2017

Group Members

0773865 Tim Coerver
0953805 Pieter de Groot
0970955 Jos Terlouw
0973811 Bas Vermij
0972391 Roel Vromans
0975718 Corné van Haren

Initial Design

Requirements

  • Software easy to setup
    • Updated with one easy command, e.g. 'git pull'.
    • Software can be compiled using 'cmake' and 'make'.
    • One executable to start software.
  • Autonomously solving the corridor challenge
    • Solving the corridor challenge has to be done within 5 minutes.
  • Autonomously solving the maze challenge
    • Solving the maze challenge has to be done within 7 minutes.
  • Avoiding collision
    • Do not bump into walls or doors.
  • Recognize and open a door in the maze
    • There might be multiple dead ends in the maze, one of which is a door. The robot has to be autonomously open the door (by ringing a bell) to solve the maze.
  • Detect corridors, corners, T-junctions and intersections
    • The maze and corridor challenge consists of several, corridors, corners, T-junctions and intersections. Various algorithms created in order to detect these.
  • Navigate through corridors, corners, T-junctions and intersections
    • When corridors, corners, T-junctions and intersections are detected, the robot has to drive trough these. In order to do this, strategies have to be created for each of these.
  • Detecting dead ends
    • The maze can contain dead ends, these have to be distinguished from doors.
  • Detecting maze exit
    • The exit of the maze has to be detected in order to know when the maze is finished.
  • Navigate open spaces
    • The maze can contain open spaced, when these are detected these has to be explored by navigating trough them.

Specifications

The specifications are related to the requirements specified above.

  • The time to reach the end of the maze is 7 minutes.
  • The time to accomplish the corridor challenge is 5 minutes
  • The robot may not be idle for more than 30 seconds.
  • When the robot find a door, it rings a bell and the door will be opened manually.
  • Two attempts to solve the maze are allowed. Both attempts have to be finished within 7 minutes total.
  • Two attempts are allowed to solve the corridor challenge. Both attempts have to be finished within 5 minutes.
  • When the robot bumps into a wall the attempt is over.


Specifications of the maze

  • All walls are positioned approximately perpendicular to one another.
  • Open spaces might occur (as depicted in Figure 1 ).
  • There may be loops in the maze, which means that some walls may not be connected to other walls.
  • Walls are approximately parallel.

Doors and open spaces are specified as described by Figure 1

A Maze
Figure 1: Maze open spaces and door specifications.

Functions

The functions are categorized in three different levels of complexity: Low, Mid and High level. An overview of the functions is given in Figure 2.

Interface diagram group 10.

Components

The following components are accessible on the pico:

  • Actuators
    • Holonomic Base (Omni-wheels)
  • Computer
    • CPU Intel i7
    • OS Ubuntu 14.04

Specifications

Interface

Weekly Planning

- finish all tutorials if you dont have already before 8 may.
- Make design document deadline: 10 may
- Think about design.
- Think more about design.
- plan a meeting with our supervisor(s)
- Add everyone to the git repository