0LAUK0 PRE2018 3 Group 13 SotA Literature Study: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
Line 34: Line 34:
|10.0 - 10.2
|10.0 - 10.2
|}
|}
=== Braille users ===
People who are blind from birth or in their early childhood are more likely to be able to read Braille fluently unlike those who are taught Braille in a later stage in life. The methods of communication strongly vary between deaf-blind people, which has to do with the level of sensory impairments, extent, type, history, personal characteristics and their developed skills. Deaf-blind people have significantly higher rates of depression compared to those with no sensory impairments [1][2]. This is mainly due to communication difficulties and the lack of social support, which consequently lead to social isolation, loss of independence and the feeling of reduced self-confidence and security.
Blindness and deafness cause sensory deprivation which consequently create neuroplastic changes in the brain [3]. In case of blindness, people become more sensitive to touch, hearing and verbal memory. While deafness improves processing of tactile information. People who are deaf-blind from birth can only interact with those in close proximity with touch and require reliable routines to allow communication. By having predictability, blind-deaf people develop expectations which ease the anxiety caused by the lack of sensory information [4]. Blind people are not necessarily better than sighted people in terms of measuring tactile feedback. Once the sighted people have practiced, their performance does not differ significantly to those of blind people [5].
Blind braille readers who use three fingers often misperceive which of their fingers is being touched
[6]. As each Braille reader has their own preferences of which hand they read with, it is also common to read using both hands [7][8] and this happens to be the most efficient as well in terms of speed. Children are found to be faster and more accurate when reading with their left hand fingers, while adults seem to have no difference in speed but fewer mistakes are made when reading with their left hand [9].


== References ==
== References ==
Line 42: Line 52:
# Popularity of Braille in the U.K. Available at: https://www.bbc.com/news/magazine-16984742  
# Popularity of Braille in the U.K. Available at: https://www.bbc.com/news/magazine-16984742  
# National Library Service for the Blind and Physically Handicapped, Library of Congress. Specification 800: Braille Books and Pamphlets. Available at: http://www.loc.gov/nlsold/specs/800_march5_2008.pdf
# National Library Service for the Blind and Physically Handicapped, Library of Congress. Specification 800: Braille Books and Pamphlets. Available at: http://www.loc.gov/nlsold/specs/800_march5_2008.pdf
=== Braille users ===
# Marion Hersh; Deafblind People, Communication, Independence, and Isolation, The Journal of Deaf Studies and Deaf Education, Volume 18, Issue 4, 1 October 2013, Pages 446–463. Available at: https://academic.oup.com/jdsde/article/18/4/446/560048
# Golob, Gorazd & Gregor-Svetec, Diana & Leskovšek, Ana & Marija Turnšek, Ana & Majnaric, Igor & Dudok, Taras & Mayik, Volodymyr & Urbas, Raša. (2014). BRAILLE TEXT AND RAISED IMAGES USED IN BOOKS FOR CHILDREN WHO ARE BLIND OR VISUALLY IMPAIRED. Available at: https://www.researchgate.net/publication/309292310_BRAILLE_TEXT_AND_RAISED_IMAGES_USED_IN_BOOKS_FOR_CHILDREN_WHO_ARE_BLIND_OR_VISUALLY_IMPAIRED
# Merabet, Lotfi B., Pascual-Leone, Alvaro, Neural reorganization following sensory loss: the opportunity of change, Nature Reviews Neuroscience 11, pp 44-52 (2010). Available at: https://www.nature.com/articles/nrn2758
# Miles B., Ed M. (2008), Overview on Deaf-Blindness, Available at: http://documents.nationaldb.org/products/Overview.pdf
# Grant A.C., Thiagarajah M.C., Sathian K. (2000), Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns, Perception & Psychophysics 2000, 62 (2), pp 301-312. Available at: https://link.springer.com/content/pdf/10.3758%2FBF03205550.pdf
# Sterr, Annette & M. Müller, Matthias & Elbert, Thomas & Rockstroh, Brigitte & Pantev, Christo & Taub, Edward. (1998). Changed perceptions in Braille readers. Nature. 391. 134-5. 10.1038/34322. Available at: https://www.researchgate.net/publication/13801187_Changed_perceptions_in_Braille_readers
# Susanna Millar, The Perceptual "Window" in Two-Handed Braille: Do the Left and Right Hands Process Text Simultaneously?, Volume 23, Issue 1, 1987, Pages 111-122, ISSN 0010-9452. Available at: https://www.sciencedirect.com/science/article/pii/S0010945287800230?via%3Dihub
# Fertsch, P. (1947). Hand Dominance in Reading Braille. The American Journal of Psychology, 60(3), 335-349. Available at: https://www.jstor.org/stable/1416915?origin=crossref&seq=1#page_scan_tab_contents
# Hermelin B., N. O'Connor, Functional asymmetry in the reading of Braille, Volume 9, Issue 4, 1971, Pages 431-435, ISSN 0028-3932. Available at: https://www.sciencedirect.com/science/article/pii/0028393271900078?via%3Dihub

Revision as of 16:46, 13 February 2019

Introduction

This page contains the State-of-the-Art literature study performed by group 13 for the course Project Robots Everywhere (0LAUK0). Here we have listed relevant topics to our main research subject. Each topic has its own summary and list of references.

Summaries

Braille system

In 1821, Barbier de la Serre invented Braille. Which got a then twelve-year-old blind student Louis Braille very excited. The system wasn’t like the Braille we know today, it used 12 dots and and every character described sounds. Louis Braille worked on la Serre’s system for several years and improved it to how we know it today. He changed the characters to 6 dots and instead of sounds, it describes glyphs (eg. letters, numbers) [1].

The number of people that use Braille has been a long-term decline. In the UK, there are two million visually impaired people, of which the majority is over 65 years old [2]. Fewer than 1% of the two million visually impaired people are users of Braille (18-20,000). Braille users typically are those who have not been able to see from an early age. Only 2,000 people regularly order books from the Braille library, which suggests most people only use it for practical reasons rather than entertainment.

The braille system consists of evenly arranged dots in quadrangular letter spaces, called cells. A full cell is three dots high and two dots wide. Only 63 different characters can be formed. Braille uses a fixed-width font, which means that every character occupies the same amount of space regardless of the amount of dots in the cell. Although the standards for creating braille differ per country, the American National Standard: Accessible and Usable Buildings and Facilities: 2003: Standard and Commentary, Section 703.4 details a range of standards in an effort to improve readability [3].

Braille Signage Standards
Measurement Range Minimum - Maximum in Millimeters
Dot Base Diameter 1.5 - 1.6
Distance between two dots in the same cell 2.3 - 2.5
Distance between corresponding dots in adjacent cells 6.1 - 7.6
Dot height 0.6 - 0.9
Distance between corresponding dots from one cell directly below 10.0 - 10.2

Braille users

People who are blind from birth or in their early childhood are more likely to be able to read Braille fluently unlike those who are taught Braille in a later stage in life. The methods of communication strongly vary between deaf-blind people, which has to do with the level of sensory impairments, extent, type, history, personal characteristics and their developed skills. Deaf-blind people have significantly higher rates of depression compared to those with no sensory impairments [1][2]. This is mainly due to communication difficulties and the lack of social support, which consequently lead to social isolation, loss of independence and the feeling of reduced self-confidence and security.

Blindness and deafness cause sensory deprivation which consequently create neuroplastic changes in the brain [3]. In case of blindness, people become more sensitive to touch, hearing and verbal memory. While deafness improves processing of tactile information. People who are deaf-blind from birth can only interact with those in close proximity with touch and require reliable routines to allow communication. By having predictability, blind-deaf people develop expectations which ease the anxiety caused by the lack of sensory information [4]. Blind people are not necessarily better than sighted people in terms of measuring tactile feedback. Once the sighted people have practiced, their performance does not differ significantly to those of blind people [5].

Blind braille readers who use three fingers often misperceive which of their fingers is being touched

[6]. As each Braille reader has their own preferences of which hand they read with, it is also common to read using both hands [7][8] and this happens to be the most efficient as well in terms of speed. Children are found to be faster and more accurate when reading with their left hand fingers, while adults seem to have no difference in speed but fewer mistakes are made when reading with their left hand [9]. 


References

Braille system

  1. History of Braille. Available at: https://typeculture.com/academic-resource/articles-essays/braille-tactile-writing-system/
  2. Popularity of Braille in the U.K. Available at: https://www.bbc.com/news/magazine-16984742
  3. National Library Service for the Blind and Physically Handicapped, Library of Congress. Specification 800: Braille Books and Pamphlets. Available at: http://www.loc.gov/nlsold/specs/800_march5_2008.pdf

Braille users

  1. Marion Hersh; Deafblind People, Communication, Independence, and Isolation, The Journal of Deaf Studies and Deaf Education, Volume 18, Issue 4, 1 October 2013, Pages 446–463. Available at: https://academic.oup.com/jdsde/article/18/4/446/560048
  2. Golob, Gorazd & Gregor-Svetec, Diana & Leskovšek, Ana & Marija Turnšek, Ana & Majnaric, Igor & Dudok, Taras & Mayik, Volodymyr & Urbas, Raša. (2014). BRAILLE TEXT AND RAISED IMAGES USED IN BOOKS FOR CHILDREN WHO ARE BLIND OR VISUALLY IMPAIRED. Available at: https://www.researchgate.net/publication/309292310_BRAILLE_TEXT_AND_RAISED_IMAGES_USED_IN_BOOKS_FOR_CHILDREN_WHO_ARE_BLIND_OR_VISUALLY_IMPAIRED
  3. Merabet, Lotfi B., Pascual-Leone, Alvaro, Neural reorganization following sensory loss: the opportunity of change, Nature Reviews Neuroscience 11, pp 44-52 (2010). Available at: https://www.nature.com/articles/nrn2758
  4. Miles B., Ed M. (2008), Overview on Deaf-Blindness, Available at: http://documents.nationaldb.org/products/Overview.pdf
  5. Grant A.C., Thiagarajah M.C., Sathian K. (2000), Tactile perception in blind Braille readers: A psychophysical study of acuity and hyperacuity using gratings and dot patterns, Perception & Psychophysics 2000, 62 (2), pp 301-312. Available at: https://link.springer.com/content/pdf/10.3758%2FBF03205550.pdf
  6. Sterr, Annette & M. Müller, Matthias & Elbert, Thomas & Rockstroh, Brigitte & Pantev, Christo & Taub, Edward. (1998). Changed perceptions in Braille readers. Nature. 391. 134-5. 10.1038/34322. Available at: https://www.researchgate.net/publication/13801187_Changed_perceptions_in_Braille_readers
  7. Susanna Millar, The Perceptual "Window" in Two-Handed Braille: Do the Left and Right Hands Process Text Simultaneously?, Volume 23, Issue 1, 1987, Pages 111-122, ISSN 0010-9452. Available at: https://www.sciencedirect.com/science/article/pii/S0010945287800230?via%3Dihub
  8. Fertsch, P. (1947). Hand Dominance in Reading Braille. The American Journal of Psychology, 60(3), 335-349. Available at: https://www.jstor.org/stable/1416915?origin=crossref&seq=1#page_scan_tab_contents
  9. Hermelin B., N. O'Connor, Functional asymmetry in the reading of Braille, Volume 9, Issue 4, 1971, Pages 431-435, ISSN 0028-3932. Available at: https://www.sciencedirect.com/science/article/pii/0028393271900078?via%3Dihub