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• Robot navigation problem
• Local navigation algorithms: properties
• Local navigation algorithms: examples
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Robot navigation problem / introduction

• What is the robot navigation problem?
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Robot navigation problem / introduction

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose 

(B)
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Robot navigation problem / introduction

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose 

(B)
• This raises a question: where is A and where is B?
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
 Global: compute path from start to goal
 Local: move towards the goal using the global path as a guide
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Robot navigation problem / local vs. global
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
2. Static vs. dynamic environment
 Global: static environment
 Local: uncertain, dynamic environment
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Robot navigation problem / local vs. global
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
2. Static vs. dynamic environment
3. Global world model often incomplete

• More information might come with time
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?

• Problem-dependent, but in general:
• Local: sensor-range
• Global: map

• Note: explicitly define local and global to avoid confusion!
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?
• This week: local navigation

• How can we solve this?
• Next week: global navigation
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Local navigation algorithms / properties

• Goal of local navigation: go from A to B, using the global path as a guide
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Local navigation algorithms / properties

• Goal of local navigation: go from A to B, using the global path as a guide
• Properties of local navigation algorithms
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints



Local navigation algorithms / properties

• Last week’s exercise: the art of nothing crashing
• Let the robot drive forward and let it stop before it hits anything
• How to go to a certain goal?
• We want to balance not crashing and reaching the goal

• Several approach exist, we will discuss three today
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints



Local navigation algorithms / examples

• Three examples
• Artificial potential fields
• Dynamic window approach
• Vector field histograms
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Local navigation algorithms / examples

• Three examples
• Assumptions

• A global path is available
• Robot position is known
• Obstacle positions are known
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Local navigation algorithms / examples

• Three examples
• Assumptions
• Note that the explained algorithms directly provide control outputs

• Often, a path is the output of a local navigation algorithm with requires a path 
following controller to obtain control outputs
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Attraction towards goal
• Repulsion from obstacles 
• Think about marbles
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑎𝑎 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑎𝑎 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑎𝑎 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• Total potential field is the sum of individual potentials

𝑈𝑈 𝒒𝒒 = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝒒𝒒 + �
𝑗𝑗=1

𝑛𝑛

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒

• Starting point: −2,−4
• Goal point: [5,5]
• 3 obstacles: −2,−3 , 0,5,−0.5 , 3,0
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials

𝑈𝑈 𝒒𝒒 = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝒒𝒒 + �
𝑗𝑗=1

𝑛𝑛

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒

• Starting point: −2,−4
• Goal point: [5,5]
• 3 obstacles: −2,−3 , 0,5,−0.5 , 3,0
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then

𝐹𝐹 𝒒𝒒 = −∇𝑈𝑈 𝒒𝒒
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?

• Point mass: 𝒒̈𝒒 = 𝐹𝐹 𝒒𝒒
• Desired velocity: 𝒒̇𝒒 = 𝐹𝐹 𝒒𝒒
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Local navigation algorithms / artificial potential fields
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Local navigation algorithms / artificial potential fields
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Local navigation algorithms / artificial potential fields
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EMC 2017 – Group 10



Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?
• In the simulation videos we know everything… How to do it in real life?
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Local navigation algorithms / artificial potential fields
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Simulation - MRC 2019 – Group 2



Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?
• In the simulation videos we know everything… How to do it in real life?

• How to represent obstacles from laser points?
• Include size of the robot
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Local navigation algorithms / artificial potential fields
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Questions?



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

• Reactive collision avoidance based on robot dynamics
• Intuition: certain velocity during certain time, see where we end and select most 

optimal



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be 

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be 

• Possible: velocities are limited by robot’s dynamics
𝑉𝑉𝑠𝑠 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

MRC 2024 - Lecture 3 - Local Navigation41

• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be

• Possible: velocities are limited by robot’s dynamics
• Admissible: robot can stop before reaching closest obstacle

𝑉𝑉𝑎𝑎 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 𝑣̇𝑣𝑏𝑏 ∧ 𝜔𝜔 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 𝜔̇𝜔𝑏𝑏
𝑣̇𝑣𝑏𝑏 and 𝜔̇𝜔𝑏𝑏 are maximum deceleration values

𝑑𝑑 𝑣𝑣,𝜔𝜔 is distance to closest object

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be

• Possible: velocities are limited by robot’s dynamics
• Admissible: robot can stop before reaching closest obstacle
• Reachable: velocity and acceleration constraints (dynamic window)

𝑉𝑉𝑑𝑑 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑎𝑎 − 𝑣̇𝑣𝑡𝑡,𝑣𝑣𝑎𝑎 + 𝑣̇𝑣𝑡𝑡 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑎𝑎 − 𝜔̇𝜔𝑡𝑡,𝜔𝜔𝑎𝑎 + 𝜔̇𝜔𝑡𝑡
𝑣𝑣𝑎𝑎 and 𝑤𝑤𝑎𝑎 are actual velocities
𝑣̇𝑣 and 𝜔̇𝜔 are acceleration values

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑎𝑎: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑠𝑠 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑎𝑎 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 𝑣̇𝑣𝑏𝑏 ∧ 𝜔𝜔 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 𝜔̇𝜔𝑏𝑏
Here 𝑣̇𝑣𝑏𝑏 = 50 ⁄cm 𝑠𝑠2, 𝜔̇𝜔𝑏𝑏 = 60 ⁄d𝑒𝑒𝑒𝑒 𝑠𝑠2

Dark shade: non-admissible velocities

𝑉𝑉𝑎𝑎: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑎𝑎: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space

𝑉𝑉𝑑𝑑 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑎𝑎 − 𝑣̇𝑣Δ𝑡𝑡, 𝑣𝑣𝑎𝑎 + 𝑣̇𝑣Δ𝑡𝑡 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑎𝑎 − 𝜔̇𝜔Δ𝑡𝑡,𝜔𝜔𝑎𝑎 + 𝜔̇𝜔Δ𝑡𝑡



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

• Intersection of 𝑉𝑉s,𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑑𝑑 provides search space 𝑉𝑉r
𝑉𝑉𝑟𝑟 = 𝑉𝑉s ∩ 𝑉𝑉𝑎𝑎 ∩ 𝑉𝑉𝑑𝑑

→ gives 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝑉𝑉𝑟𝑟 at each time step

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall
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𝑉𝑉𝑎𝑎: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space

→ 𝑉𝑉𝑟𝑟 = 𝑉𝑉s ∩ 𝑉𝑉𝑎𝑎 ∩ 𝑉𝑉𝑑𝑑 (white area)
→ 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝑉𝑉𝑟𝑟



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

𝑥𝑥 0 ,𝑦𝑦 0 and 𝜃𝜃 0 are current position

for 𝑖𝑖 = 0:𝑁𝑁
for 𝑗𝑗 = 1: len 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

for 𝑘𝑘 = 1: len 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑥𝑥 𝑖𝑖 + 1 = 𝑥𝑥 𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 ⋅ cos 𝜃𝜃 𝑖𝑖
𝑦𝑦 𝑖𝑖 + 1 = 𝑦𝑦 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 ⋅ sin 𝜃𝜃 𝑖𝑖
𝜃𝜃 𝑖𝑖 + 1 = 𝜃𝜃 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

𝑥𝑥 0 ,𝑦𝑦 0 and 𝜃𝜃 0 are current position

for 𝑖𝑖 = 0:𝑁𝑁
for 𝑗𝑗 = 1: len 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

for 𝑘𝑘 = 1: len 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑥𝑥 𝑖𝑖 + 1 = 𝑥𝑥 𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 ⋅ cos 𝜃𝜃 𝑖𝑖
𝑦𝑦 𝑖𝑖 + 1 = 𝑦𝑦 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 ⋅ sin 𝜃𝜃 𝑖𝑖
𝜃𝜃 𝑖𝑖 + 1 = 𝜃𝜃 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space
• Maximize objective function 𝐺𝐺

𝐺𝐺 𝑣𝑣,𝜔𝜔 = 𝜎𝜎 𝑘𝑘ℎℎ 𝑣𝑣,𝜔𝜔 + 𝑘𝑘𝑑𝑑𝑑𝑑 𝑣𝑣,𝜔𝜔 + 𝑘𝑘𝑠𝑠𝑠𝑠 𝑣𝑣,𝜔𝜔
• ℎ 𝑣𝑣,𝜔𝜔 : target heading towards goal
• 𝑑𝑑 𝑣𝑣,𝜔𝜔 : distance to closest obstacle on trajectory
• 𝑠𝑠 𝑣𝑣,𝜔𝜔 : forward velocity
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable
• Generate search space
• Maximize objective function 𝐺𝐺
• Again, we have all information in simulation videos…
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

• How to represent the obstacles?
• Available information: 

• Laser range points
• Trajectory from discretized velocities might fall between two points

• Also, incorporate the size of the robot
• In the video, robot is a point mass



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable
• Generate search space
• Maximize objective function 𝐺𝐺
• Again, we have all information in simulation videos…
• Implementation

• How to check if a path is valid?
• How discretize 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟?
• How to account for robot size?

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

Questions?
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Left wall

Right wall I Right wall II



Local navigation algorithms / vector field histograms

• Treat objects as vectors in a 2D Cartesian histogram grid, and create a 
polar histogram to determine possible ‘open spaces’ to get to the goal
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑖𝑖,𝑗𝑗 of that cell containing an obstacle
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑖𝑖,𝑗𝑗 of that cell containing an obstacle
• Active window

MRC 2024 - Lecture 3 - Local Navigation60

Note that the active window should be square and centered around robot, drawing is 
purely for visualization of the approach



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑖𝑖,𝑗𝑗 of that cell containing an obstacle
• Active window
• Each active cell is treated as obstacle vector with 

• direction 𝛽𝛽𝑖𝑖,𝑗𝑗 = atan2 𝑦𝑦𝑗𝑗 − 𝑦𝑦0, 𝑥𝑥𝑖𝑖 − 𝑥𝑥0
• magnitude 𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑐𝑐𝑖𝑖,𝑗𝑗2 𝑎𝑎 − 𝑏𝑏𝑑𝑑𝑖𝑖,𝑗𝑗

• Choose 𝑎𝑎, 𝑏𝑏 such that 𝑎𝑎 − 𝑏𝑏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 0

• 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2
2

𝑤𝑤𝑠𝑠 − 1
• see [1] for further explanation on the values of 𝑎𝑎 and 𝑏𝑏
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼

𝛼𝛼 =
360°
𝑛𝑛

𝑛𝑛 is an integer, 𝑘𝑘 = 0,1,2, … ,𝑛𝑛 − 1
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑖𝑖,𝑗𝑗 and 𝑘𝑘

𝑘𝑘 = int
𝛽𝛽𝑖𝑖,𝑗𝑗
𝛼𝛼
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑖𝑖,𝑗𝑗 and 𝑘𝑘
• For each sector 𝑘𝑘, polar obstacle density ℎ𝑘𝑘 is

ℎ𝑘𝑘 = �
𝑖𝑖,𝑗𝑗

𝑚𝑚𝑖𝑖,𝑗𝑗

Note: needs smoothing due to discrete map, see [1]
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑖𝑖,𝑗𝑗 and 𝑘𝑘
• For each sector 𝑘𝑘, polar obstacle density ℎ𝑘𝑘
• Resulting histogram

• Note that the figure only shows −50°, 50° , but the histogram is actually 
−180°, 180°

• Note that no smoothing is applied
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
• Angle 𝜃𝜃 is the middle of candidate valley

𝜃𝜃 =
1
2
𝛼𝛼 𝑘𝑘𝑙𝑙 + 𝑘𝑘𝑟𝑟

𝑘𝑘𝑙𝑙 and 𝑘𝑘𝑟𝑟 are left and right boundary of selected valley
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
• Angle 𝜃𝜃 is the middle of candidate valley

𝜃𝜃 =
1
2
𝛼𝛼 𝑘𝑘𝑙𝑙 + 𝑘𝑘𝑟𝑟

𝑘𝑘𝑙𝑙 and 𝑘𝑘𝑟𝑟 are left and right boundary of selected valley

• Select the valley with closest match to goal direction
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
• Angle 𝜃𝜃 is the middle of candidate valley

𝜃𝜃 =
1
2
𝛼𝛼 𝑘𝑘𝑙𝑙 + 𝑘𝑘𝑟𝑟

𝑘𝑘𝑙𝑙 and 𝑘𝑘𝑟𝑟 are left and right boundary of selected valley

• Select the valley with closest match to goal direction
• Controller (e.g., PI) to align robot with goal direction
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control

• Anticipatory reduction: 𝑣𝑣′ = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 1
ℎ𝑚𝑚

min ℎ𝑐𝑐′ ,ℎ𝑚𝑚
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ℎ𝑐𝑐′ : obstacle density in current direction of travel
ℎ𝑚𝑚: empirically determined constant to obtain sufficient speed reduction



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control

• Anticipatory reduction: 𝑣𝑣′ = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 − 1
ℎ𝑚𝑚

min ℎ𝑐𝑐′ ,ℎ𝑚𝑚

• Steering speed reduction: 𝑣𝑣 = 𝑣𝑣′ 1 − 𝜃̇𝜃
𝜃̇𝜃𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
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ℎ𝑐𝑐′ : obstacle density in current direction of travel
ℎ𝑚𝑚: empirically determined constant to obtain sufficient speed reduction
𝜃̇𝜃: steering rate



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Example

• Grid world map to create histogram grid
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Example

• Grid world map to create histogram grid
• Assumed that obstacle position is fully known
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Local navigation algorithms / vector field histograms
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Orientation is in world frame



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Implementation considerations

• Again, think about the size of the robot
• How to create the Cartesian histogram grid 

from sensor data?
• What is the desired angle if there are no 

obstacles in the active window?
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Local navigation algorithms / vector field histograms

Questions?
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields 

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths

• Dynamic Window Approach
• Generate feasible action space based on robot dynamics within time horizon
• Considers robot dynamics → collision-free and feasible trajectories
• Requires accurate sensor data, might struggle with densely-populated environments
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths

• Dynamic Window Approach
• Generate feasible action space based on robot dynamics within time horizon
• Considers robot dynamics → collision-free and feasible trajectories
• Requires accurate sensor data, might struggle with densely-populated environments

• Vector Field Histograms
• Create polar histogram of confidence on object location
• Computationally efficient, robust to noisy sensor data
• Can struggle with narrow passages and sharp corners
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Local navigation algorithms / other possible approaches

• Optimization based
• Minimize objective function limited by constraints and system 

dynamics to find the ‘optimal’ path or trajectory
• Objective function: 

• Distance/time to goal,
• Smoothness of trajectory, 
• Comfort (acceleration/jerk),
• Safety related.
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min�
0

𝑇𝑇

𝐽𝐽 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

subject to
𝑥𝑥 0 = 𝑥𝑥0

𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡
𝑔𝑔 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 ≤ 0
𝑢𝑢 ≤ 𝑢𝑢 𝑡𝑡 ≤ 𝑢𝑢
𝑥𝑥 ≤ 𝑥𝑥 𝑡𝑡 ≤ 𝑥𝑥



• Optimization based
• Learning based

• Relies heavily on training sensor data, 
• Train a learning model (e.g., neural network) to

• Predict behaviour of environment
• Detect obstacles
• Decision-making

• Based on real-life sensor data, create necessary output
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Local navigation algorithms / other possible approaches
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https://www.youtube.com/watch?v=FwT4TSRsiVw



• Optimization based
• Learning based
• Note:

• We have explained three approaches from a wide range of possibilities
• In the exercises, you are allowed to implement approaches not treated in this lecture
• But note that more complex is not necessarily better..
• Additionally, note that the explained algorithms directly provide control outputs
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Local navigation algorithms / other possible approaches



Footnote: world representation

• All sensor info treated the same
• In more complex environments different objects should be treated 

differently based on their semantic context
• E.g., keep more distance to humans.
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Recap

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose (B)

• What is the goal of local navigation?
• Go from A to B using the global path as a guide

• Local navigation algorithms: properties
• Local navigation algorithms: examples

• Artificial potential fields
• Dynamic window approach
• Vector field histogram
• Optimization and learning based methods
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Assignment

• Divide your group into two (equal sized) groups
• Enable your robot to drive through a corridor to a goal position by 

implementing two different local navigation algorithms (one by each 
subgroup)

• Answer the provided questions, provide videos of simulations and testing 
on the field, and upload your code (with comments!)

• Final remark: 
• You will use one of the algorithms in the final challenge
• Create a function for each algorithm (which use the same input + output) to enable 

easy implementation and testing
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