4SC020 Mobile Robot Control 2024: Local navigation

((e) (e · · ·

- [[] - [] [] -]

8

MAY 1ST 2024

Aron Aertssen

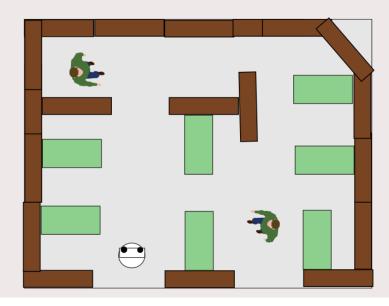
Mechanical Engineering, Robotics

Outline

- Robot navigation problem
- Local navigation algorithms: properties
- Local navigation algorithms: examples
- Recap
- Assignment

Robot navigation problem / introduction

• What is the robot navigation problem?



Robot navigation problem / introduction

- What is the robot navigation problem?
 - Find a feasible path or trajectory from a given initial pose (A) to the desired final pose (B)

Robot navigation problem / introduction

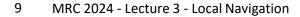
- What is the robot navigation problem?
 - Find a feasible path or trajectory from a given initial pose (A) to the desired final pose (B)
- This raises a question: where is A and where is B?

• Division into global and local navigation. Why?

- Division into global and local navigation. Why?
 - 1. Reduce complexity
 - Global: compute path from start to goal
 - Local: move towards the goal using the global path as a guide

Local

TU/e



- Division into global and local navigation. Why?
 - 1. Reduce complexity
 - 2. Static vs. dynamic environment
 - Global: static environment
 - Local: uncertain, dynamic environment

Local

TU/e

- Division into global and local navigation. Why?
 - 1. Reduce complexity
 - 2. Static vs. dynamic environment
 - 3. Global world model often incomplete
 - More information might come with time

- Division into global and local navigation. Why?
- Where is local and global?

- Division into global and local navigation. Why?
- Where is local and global?
 - Problem-dependent, but in general:
 - Local: sensor-range
 - Global: map
 - Note: explicitly define local and global to avoid confusion!

- Division into global and local navigation. Why?
- Where is local and global?
- This week: **local navigation**
 - How can we solve this?
- Next week: global navigation

Local navigation algorithms / properties

• Goal of local navigation: go from A to B, using the global path as a guide



Local navigation algorithms / properties

- Goal of local navigation: go from A to B, using the global path as a guide
- Properties of local navigation algorithms
 - Completeness: finding a path if one exists
 - Optimality: finding the optimal path (time, energy, distance, ...)
 - Computational complexity: scalability
 - Robustness against a dynamic environment
 - ? Robustness against uncertainty
 - Kinematic and dynamic constraints

Local navigation algorithms / properties

- Last week's exercise: the art of nothing crashing
 - Let the robot drive forward and let it stop before it hits anything
 - How to go to a certain goal?
 - We want to balance not crashing and reaching the goal
- Several approach exist, we will discuss three today
 - Completeness: finding a path if one exists
 - Optimality: finding the optimal path (time, energy, distance, ...)
 - Computational complexity: scalability
 - Robustness against a dynamic environment
 - ? Robustness against uncertainty
 - Kinematic and dynamic constraints

Local navigation algorithms / examples

- Three examples
 - Artificial potential fields
 - Dynamic window approach
 - Vector field histograms

Local navigation algorithms / examples

- Three examples
- Assumptions
 - A global path is available
 - Robot position is known
 - Obstacle positions are known

Local navigation algorithms / examples

- Three examples
- Assumptions
- Note that the explained algorithms directly provide **control outputs**
 - Often, a **path** is the output of a local navigation algorithm with requires a path following controller to obtain control outputs

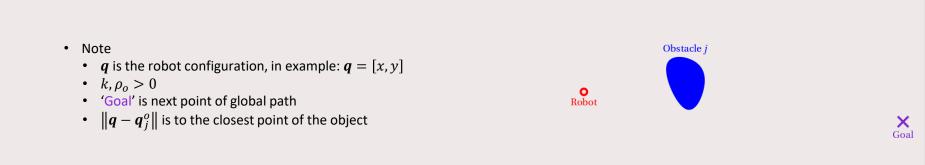
- Artificial potentials
 - Attraction towards goal
 - Repulsion from obstacles
 - Think about marbles



https://sudonull.com/post/62343-What-robotics-can-teachgaming-Al

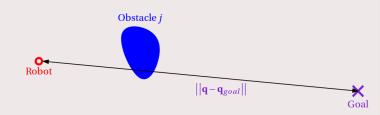
TU/e

- Artificial potentials
- Amplitude based on distance to object q_i^o and goal q_{goal} (See Chap 12.6 of [1])



- Artificial potentials
- Amplitude based on distance to object q_i^o and goal q_{goal} (See Chap 12.6 of [1])
 - $U_{att}(\boldsymbol{q}) = \frac{1}{2}k_a (\|\boldsymbol{q} \boldsymbol{q}_{goal}\|)^2$

- Note
 - q is the robot configuration, in example: q = [x, y]
 - $k, \rho_o > 0$
 - 'Goal' is next point of global path
 - $\| oldsymbol{q} oldsymbol{q}_j^o \|$ is to the closest point of the object

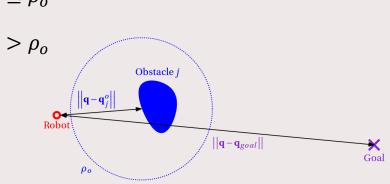


- Artificial potentials
- Amplitude based on distance to object q_i^o and goal q_{goal} (See Chap 12.6 of [1])

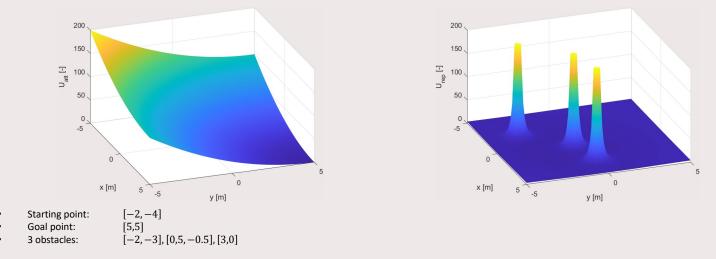
•
$$U_{att}(\boldsymbol{q}) = \frac{1}{2} k_a (\|\boldsymbol{q} - \boldsymbol{q}_{goal}\|)^2$$

• $U_{rep,j}(\boldsymbol{q}) = \begin{cases} \frac{1}{2} k_{rep,j} (\frac{1}{\|\boldsymbol{q} - \boldsymbol{q}_j^o\|} - \frac{1}{\rho_o})^2 & \text{if } \|\boldsymbol{q} - \boldsymbol{q}_j^o\| \le \rho_o \\ 0 & \text{if } \|\boldsymbol{q} - \boldsymbol{q}_j^o\| > \rho_o \end{cases}$

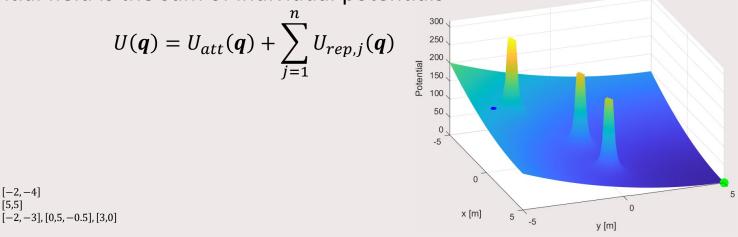
- Note
 - q is the robot configuration, in example: q = [x, y]
 - $k, \rho_o > 0$
 - 'Goal' is next point of global path
 - $\| oldsymbol{q} oldsymbol{q}_j^o \|$ is to the closest point of the object



- Artificial potentials
- Amplitude based on distance to object q_i^o and goal q_{goal} (See Chap 12.6 of [1])



- Artificial potentials ٠
- Amplitude based on distance to object $oldsymbol{q}_{j}^{o}$ and goal $oldsymbol{q}_{goal}$ •
- Total potential field is the sum of individual potentials •



[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, "Robotics: Modelling, Planning and Control," Springer Publishing Company, Incorporated, 2010

[-2, -4][5,5]

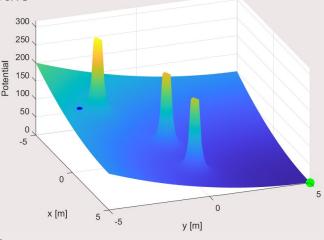
Starting point:

Goal point:

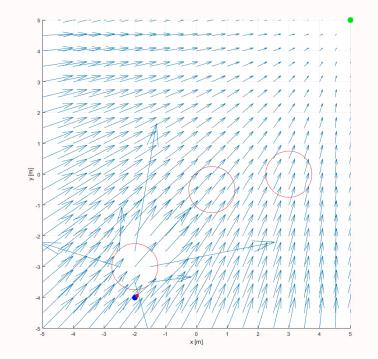
3 obstacles:

- Artificial potentials
- Amplitude based on distance to object \boldsymbol{q}_{i}^{o} and goal \boldsymbol{q}_{goal}
- Total potential field is the sum of individual potentials
- The artificial force acting on the robot is then

 $F(\boldsymbol{q}) = -\nabla U(\boldsymbol{q})$



- Artificial potentials
- Amplitude based on distance to object \boldsymbol{q}_{j}^{o} and goal \boldsymbol{q}_{goal}
- Total potential field is the sum of individual potentials
- The artificial force acting on the robot is then
- How to use that force?
 - Point mass: $\ddot{q} = F(q)$
 - Desired velocity: $\dot{q} = F(q)$

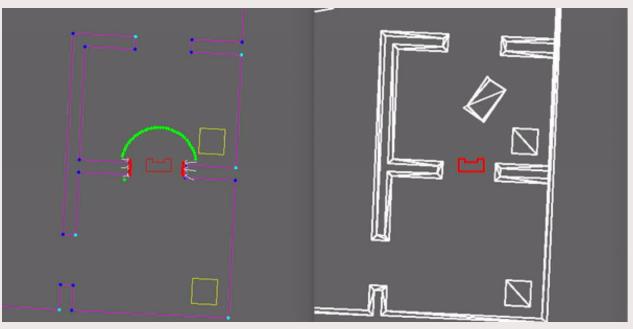




EMC 2017 – Group 10

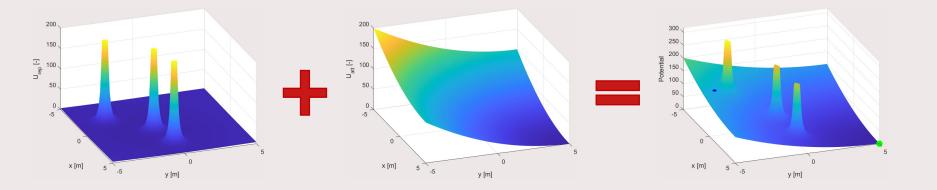
TU/e

- Artificial potentials
- Amplitude based on distance to object \boldsymbol{q}_{j}^{o} and goal \boldsymbol{q}_{goal}
- Total potential field is the sum of individual potentials
- The artificial force acting on the robot is then
- How to use that force?
- In the simulation videos we know everything... How to do it in real life?



Simulation - MRC 2019 – Group 2

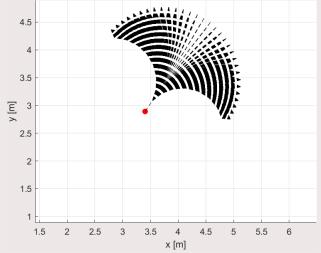
- Artificial potentials
- Amplitude based on distance to object \boldsymbol{q}_{j}^{o} and goal \boldsymbol{q}_{goal}
- Total potential field is the sum of individual potentials
- The artificial force acting on the robot is then
- How to use that force?
- In the simulation videos we know everything... How to do it in real life?
 - How to represent obstacles from laser points?
 - Include size of the robot



Questions?

Local navigation algorithms / dynamic window approach

- Reactive collision avoidance based on robot dynamics
 - Intuition: certain velocity during certain time, see where we end and select most optimal



D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t, where (v, ω) have to be

- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t, where (v, ω) have to be
 - Possible: velocities are limited by robot's dynamics

 $V_{s} = \{v, \omega | v \in [v_{min}, v_{max}] \land \omega \in [\omega_{min}, \omega_{max}]\}$

- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t, where (v, ω) have to be
 - Possible: velocities are limited by robot's dynamics
 - Admissible: robot can stop before reaching closest obstacle

$$V_{a} = \left\{ v, \omega | v \leq \sqrt{2d(v, \omega)\dot{v}_{b}} \land \omega \leq \sqrt{2d(v, \omega)\dot{\omega}_{b}} \right\}$$

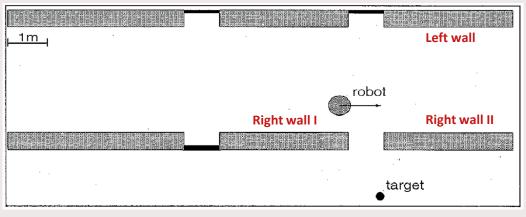
 \dot{v}_b and $\dot{\omega}_b$ are maximum deceleration values $d(v,\omega)$ is distance to closest object

- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t, where (v, ω) have to be
 - Possible: velocities are limited by robot's dynamics
 - Admissible: robot can stop before reaching closest obstacle
 - Reachable: velocity and acceleration constraints (dynamic window)

$$V_{d} = \{v, \omega | v \in [v_{a} - \dot{v}t, v_{a} + \dot{v}t] \land \omega \in [\omega_{a} - \dot{\omega}t, \omega_{a} + \dot{\omega}t]\}$$

$$v_{a} \text{ and } w_{a} \text{ are actual velocities}$$

$$\dot{v} \text{ and } \dot{\omega} \text{ are acceleration values}$$

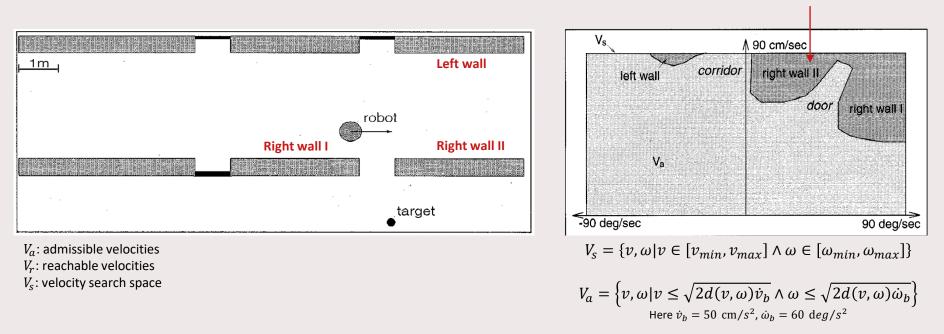


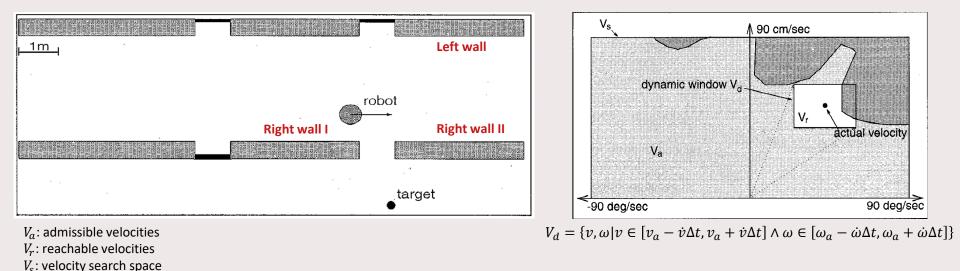
 V_a : admissible velocities

 V_r : reachable velocities

 V_s : velocity search space

Dark shade: non-admissible velocities

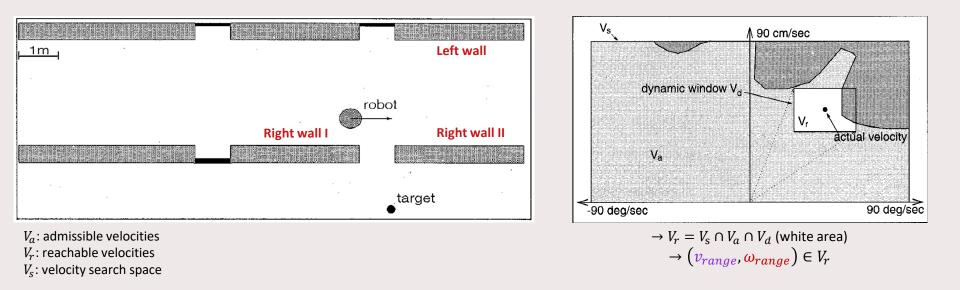




- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space
 - Intersection of $V_{\rm s}$, V_a and V_d provides search space $V_{
 m r}$

 $V_r = V_{\rm s} \cap V_a \cap V_d$

 \rightarrow gives $(v_{range}, \omega_{range}) \in V_r$ at each time step

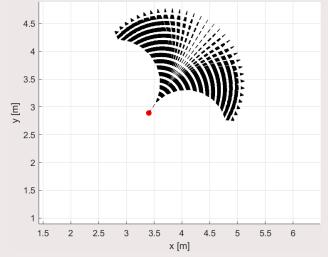


- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space

x(0), y(0) and $\theta(0)$ are current position

or
$$i = 1: N$$

for $j = 1: \operatorname{len}(v_{range})$
for $k = 1: \operatorname{len}(\omega_{range})$
 $x(i+1) = x(i) + v_{range}(j) \cdot \cos(\theta(i))$
 $y(i+1) = y(i) + \Delta t \cdot v_{range}(j) \cdot \sin(\theta(i))$
 $\theta(i+1) = \theta(i) + \Delta t \cdot \omega_{range}(k)$

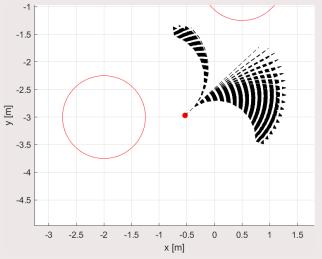


- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space

x(0), y(0) and $\theta(0)$ are current position

for
$$i = 1: N$$

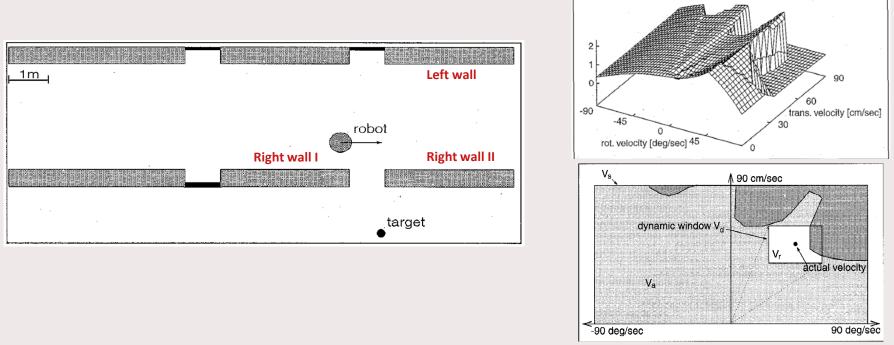
for $j = 1: \operatorname{len}(v_{range})$
for $k = 1: \operatorname{len}(\omega_{range})$
 $x(i+1) = x(i) + v_{range}(j) \cdot \cos(\theta(i))$
 $y(i+1) = y(i) + \Delta t \cdot v_{range}(j) \cdot \sin(\theta(i))$
 $\theta(i+1) = \theta(i) + \Delta t \cdot \omega_{range}(k)$



- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space
- Maximize objective function *G* within dynamic window

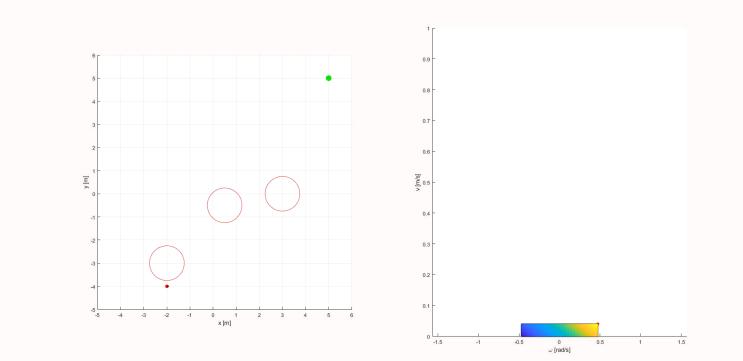
 $G(v,\omega) = \sigma \left(k_h h(v,\omega) + k_d d(v,\omega) + k_s s(v,\omega) \right)$

- $h(v, \omega)$: target heading towards goal
- $d(v, \omega)$: distance to closest obstacle on trajectory
- $s(v, \omega)$: forward velocity

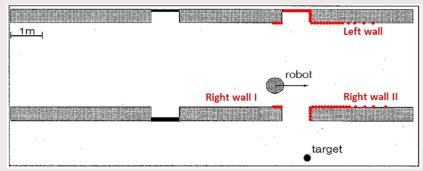


D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

evaluation function -----



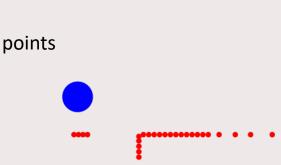
- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space
- Maximize objective function G within dynamic window
- Again, we have all information in simulation videos...



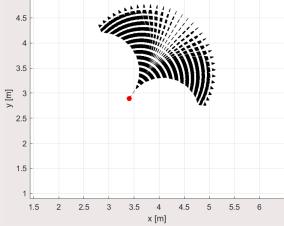
- How to represent the obstacles?
- Available information:
 - Laser range points
 - Trajectory from discretized velocities might fall between two points
- Also, incorporate the size of the robot
 - In the video, robot is a point mass

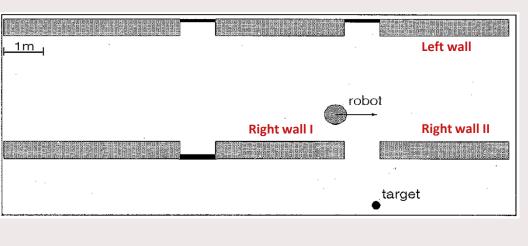
D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

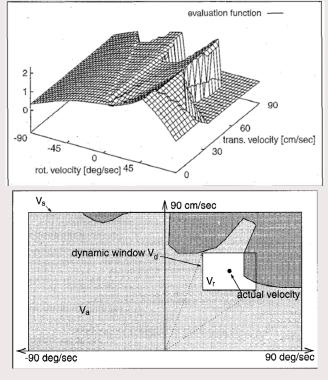
54



- Reactive collision avoidance based on robot dynamics
- Consider velocities (v, ω) during t: possible, admissible, reachable
- Generate search space
- Maximize objective function *G* within dynamic window
- Again, we have all information in simulation videos...
- Implementation
 - How to check if a path is valid?
 - How discretize ν_{range} and ω_{range}?
 - How to account for robot size?

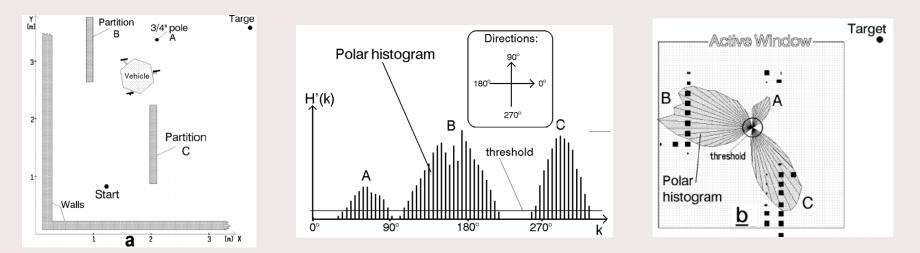




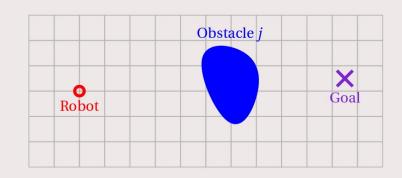


Questions?

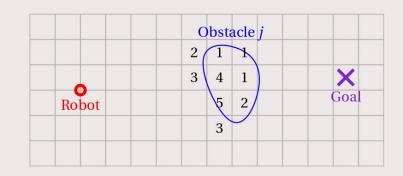
• Treat objects as vectors in a 2D Cartesian histogram grid, and create a polar histogram to determine possible 'open spaces' to get to the goal



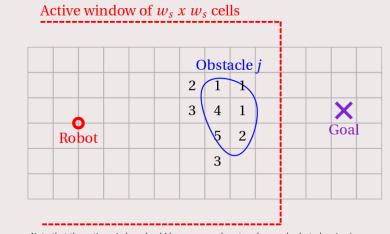
• 2D Cartesian histogram grid



- 2D Cartesian histogram grid
 - each cell holds a certainty (or confidence) value $c_{i,j}$ of that cell containing an obstacle

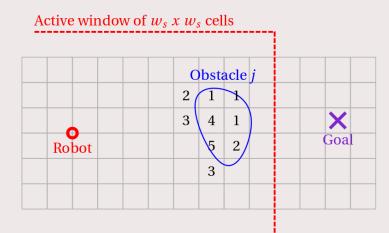


- 2D Cartesian histogram grid
 - each cell holds a certainty (or confidence) value $c_{i,j}$ of that cell containing an obstacle
 - Active window



Note that the active window should be square and centered around robot, drawing is purely for visualization of the approach

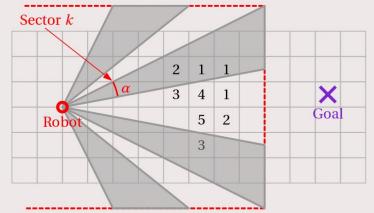
- 2D Cartesian histogram grid
 - each cell holds a certainty (or confidence) value $c_{i,j}$ of that cell containing an obstacle
 - Active window
 - Each active cell is treated as obstacle vector with
 - direction $\beta_{i,j} = \operatorname{atan2}(y_j y_0, x_i x_0)$
 - magnitude $m_{i,j} = c_{i,j}^2 (a bd_{i,j})$
 - Choose a, b such that $a bd_{max} = 0$
 - $d_{max} = \frac{\sqrt{2}}{2}(w_s 1)$
 - see [1] for further explanation on the values of *a* and *b*



- 2D Cartesian histogram grid
- Polar histogram
 - Sector k corresponds to angular resolution α

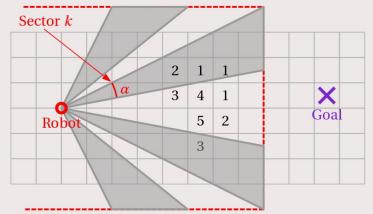
$$\alpha = \frac{360^{\circ}}{n}$$

n is an integer, $k = 0, 1, 2, ..., n - 1$



- 2D Cartesian histogram grid
- Polar histogram
 - Sector k corresponds to angular resolution α
 - Link between each cell $c_{i,j}$ and k

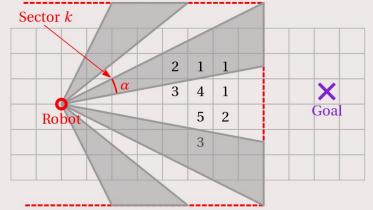
$$k = \operatorname{int}\left(\frac{\beta_{i,j}}{\alpha}\right)$$



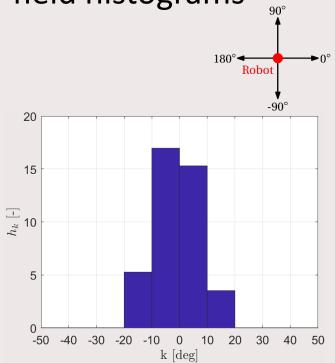
- 2D Cartesian histogram grid
- Polar histogram
 - Sector k corresponds to angular resolution α
 - Link between each cell $c_{i,j}$ and k
 - For each sector k, polar obstacle density h_k is

$$h_k = \sum_{i,j} m_{i,j}$$

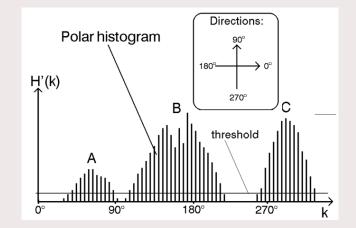
Note: needs smoothing due to discrete map, see [1]



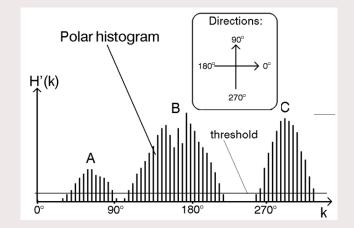
- 2D Cartesian histogram grid
- Polar histogram
 - Sector k corresponds to angular resolution α
 - Link between each cell $c_{i,j}$ and k
 - For each sector k, polar obstacle density h_k
 - Resulting histogram
 - Note that the figure only shows $[-50^\circ, 50^\circ]$, but the histogram is actually $[-180^\circ, 180^\circ)$
 - Note that no smoothing is applied



- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
 - Smoothed polar histogram H'(k) [1]

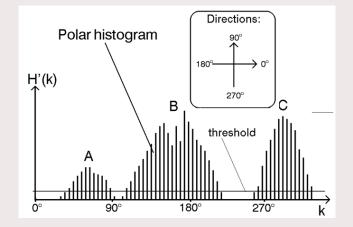


- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
 - Smoothed polar histogram H'(k) [1]
 - Candidate valleys: H'(k) below threshold



- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
 - Smoothed polar histogram H'(k) [1]
 - Candidate valleys: H'(k) below threshold
 - Angle θ is the middle of candidate valley

$$heta=rac{1}{2}lpha(k_l+k_r)$$
 k_l and k_r are left and right boundary of selected valley

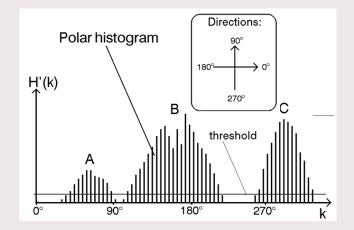


- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
 - Smoothed polar histogram H'(k) [1]
 - Candidate valleys: H'(k) below threshold
 - Angle θ is the middle of candidate valley

$$\theta = \frac{1}{2}\alpha(k_l + k_r)$$

 k_l and k_r are left and right boundary of selected valley

• Select the valley with closest match to goal direction



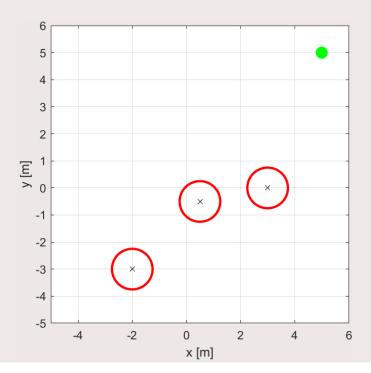
- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
- Velocity control
 - Anticipatory reduction: $v' = V_{max} \left(1 \frac{1}{h_m} \min(h'_c, h_m) \right)$

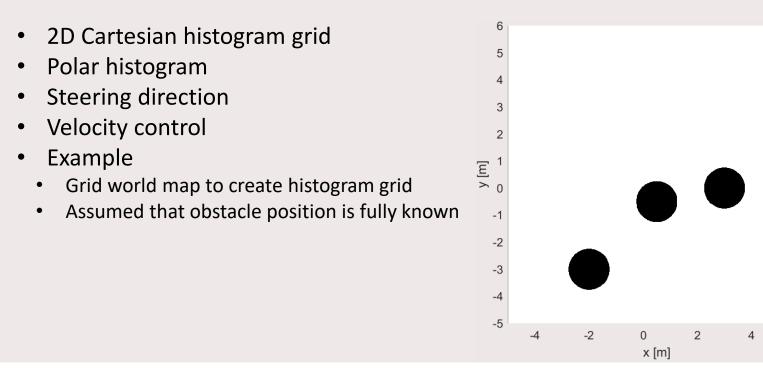
 h_c : obstacle density in current direction of travel h_m : empirically determined constant to obtain sufficient speed reduction

- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
- Velocity control
 - Anticipatory reduction: $v' = V_{max} \left(1 \frac{1}{h_m} \min(h'_c, h_m) \right)$
 - Steering speed reduction: $v = v' \left(1 \frac{\ddot{\theta}}{\dot{\theta}_{max}}\right) + V_{min}$

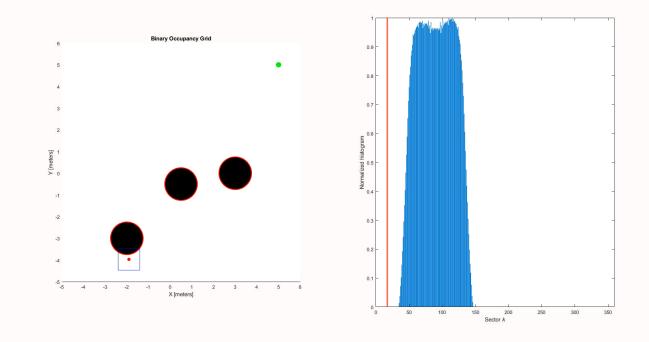
 h'_c : obstacle density in current direction of travel h_m : empirically determined constant to obtain sufficient speed reduction $\dot{\theta}$: steering rate

- 2D Cartesian histogram grid
- Polar histogram
- Steering direction
- Velocity control
- Example
 - Grid world map to create histogram grid



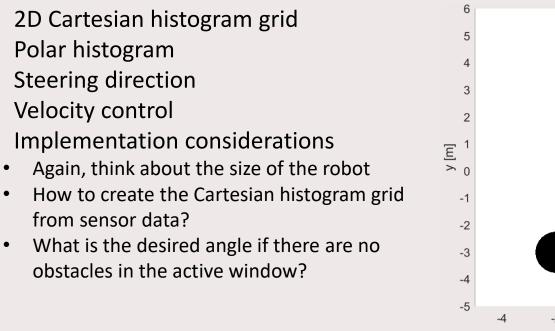


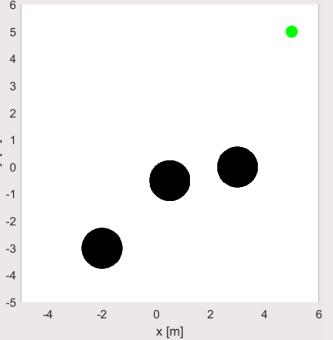
6



Orientation is in world frame

Local navigation algorithms / vector field histograms





•

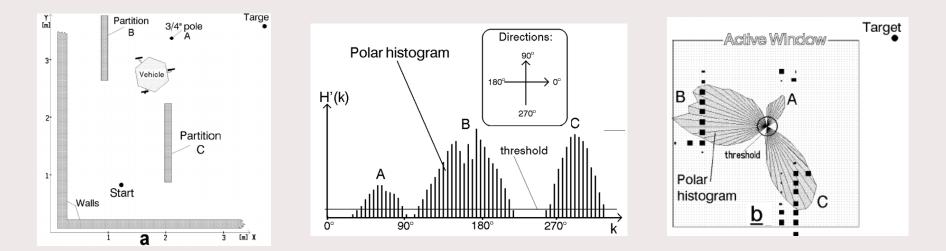
٠

•

•

٠

Local navigation algorithms / vector field histograms



Questions?

Local navigation algorithms / comparison of discussed approaches

- Artificial Potential Fields
 - Repulsion from objects and attraction to goal
 - Simple and computationally efficient
 - Suffers from local minimal and not optimal paths

Local navigation algorithms / comparison of discussed approaches

- Artificial Potential Fields
 - Repulsion from objects and attraction to goal
 - Simple and computationally efficient
 - Suffers from local minimal and not optimal paths
- Dynamic Window Approach
 - Generate feasible action space based on robot dynamics with constant velocity
 - Considers robot dynamics \rightarrow collision-free and feasible trajectories
 - Requires accurate sensor data, might struggle with densely-populated environments

Local navigation algorithms / comparison of discussed approaches

- Artificial Potential Fields
 - Repulsion from objects and attraction to goal
 - Simple and computationally efficient
 - Suffers from local minimal and not optimal paths
- Dynamic Window Approach
 - Generate feasible action space based on robot dynamics with constant velocity
 - Considers robot dynamics \rightarrow collision-free and feasible trajectories
 - Requires accurate sensor data, might struggle with densely-populated environments
- Vector Field Histograms
 - Create polar histogram of confidence on object location
 - Computationally efficient, robust to noisy sensor data
 - Can struggle with narrow passages and sharp corners

Local navigation algorithms / other possible approaches

- Optimization based
 - Minimize objective function limited by constraints and system dynamics to find the 'optimal' path or trajectory
 - Objective function:
 - Distance/time to goal,
 - Smoothness of trajectory,
 - Comfort (acceleration/jerk),
 - Safety related.

 $\min \int_{0}^{T} J(x(t), u(t))$ subject to $x(0) = x_{0}$ $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \le 0$ $\underline{u} \le u(t) \le \overline{u}$ $\underline{x} \le x(t) \le \overline{x}$

Local navigation algorithms / other possible approaches

- Optimization based
- Learning based
 - Relies heavily on training sensor data,
 - Train a learning model (e.g., neural network) to
 - Predict behaviour of environment
 - Detect obstacles
 - Decision-making
 - Based on real-life sensor data, create necessary output

https://www.youtube.com/watch?v=FwT4TSRsiVw

Local navigation algorithms / other possible approaches

- Optimization based
- Learning based
- Note:
 - We have explained three approaches from a wide range of possibilities
 - In the exercises, you are allowed to implement approaches not treated in this lecture
 - But note that more complex is not necessarily better..
 - Additionally, note that the explained algorithms directly provide control outputs

Footnote: world representation

- All sensor info treated the same
- In more complex environments different objects should be treated differently based on their semantic context
 - E.g., keep more distance to humans.

Recap

- What is the robot navigation problem?
 - Find a feasible path or trajectory from a given initial pose (A) to the desired final pose (B)
- What is the goal of local navigation?
 - Go from A to B using the global path as a guide
- Local navigation algorithms: properties
- Local navigation algorithms: examples
 - Artificial potential fields
 - Dynamic window approach
 - Vector field histogram
 - Optimization and learning based methods

Assignment

- Divide your group into two (equal sized) groups
- Enable your robot to drive through a corridor to a goal position by implementing two different local navigation algorithms (one by each subgroup)
- Answer the provided questions, provide videos of simulations and testing on the field, and upload your code (with comments!)
- Final remark:
 - You will use one of the algorithms in the final challenge
 - Create a **function for each algorithm** (which use the same input + output) to enable easy implementation and testing

Literature

S. M. LaValle, "Planning Algorithms," Cambridge University Press, Cambridge, 2006, doi: 10.1017/CBO9780511546877.

B. Siciliano and O. Khatib, Eds., "Springer Handbook of Robotics," Springer, Berlin, Heidelberg, 2008, ISBN: 978-3-540-23957-4.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, "Robotics: Modelling, Planning and Control," Springer Publishing Company, Incorporated, 2010

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in *IEEE Robotics & Automation Magazine*, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.

