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• Robot navigation problem
• Local navigation algorithms: properties
• Local navigation algorithms: examples
• Recap
• Assignment
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Robot navigation problem / introduction

• What is the robot navigation problem?
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Robot navigation problem / introduction

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose 

(B)
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Robot navigation problem / introduction

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose 

(B)
• This raises a question: where is A and where is B?
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
 Global: compute path from start to goal
 Local: move towards the goal using the global path as a guide
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Robot navigation problem / local vs. global
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
2. Static vs. dynamic environment
 Global: static environment
 Local: uncertain, dynamic environment
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Robot navigation problem / local vs. global
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
1. Reduce complexity
2. Static vs. dynamic environment
3. Global world model often incomplete

• More information might come with time
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?
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Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?

• Problem-dependent, but in general:
• Local: sensor-range
• Global: map

• Note: explicitly define local and global to avoid confusion!

MRC 2024 - Lecture 3 - Local Navigation14



Robot navigation problem / local vs. global

• Division into global and local navigation. Why? 
• Where is local and global?
• This week: local navigation

• How can we solve this?
• Next week: global navigation
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Local navigation algorithms / properties

• Goal of local navigation: go from A to B, using the global path as a guide
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Local navigation algorithms / properties

• Goal of local navigation: go from A to B, using the global path as a guide
• Properties of local navigation algorithms
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints



Local navigation algorithms / properties

• Last week’s exercise: the art of nothing crashing
• Let the robot drive forward and let it stop before it hits anything
• How to go to a certain goal?
• We want to balance not crashing and reaching the goal

• Several approach exist, we will discuss three today
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Completeness: finding a path if one exists

Optimality: finding the optimal path (time, energy, distance, …)

Computational complexity: scalability

Robustness against a dynamic environment

Robustness against uncertainty

Kinematic and dynamic constraints



Local navigation algorithms / examples

• Three examples
• Artificial potential fields
• Dynamic window approach
• Vector field histograms
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Local navigation algorithms / examples

• Three examples
• Assumptions

• A global path is available
• Robot position is known
• Obstacle positions are known

MRC 2024 - Lecture 3 - Local Navigation20



Local navigation algorithms / examples

• Three examples
• Assumptions
• Note that the explained algorithms directly provide control outputs

• Often, a path is the output of a local navigation algorithm with requires a path 
following controller to obtain control outputs
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Attraction towards goal
• Repulsion from obstacles 
• Think about marbles
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gaming-AI



Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑔𝑔𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑔𝑔 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑔𝑔𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑔𝑔 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• 𝑈𝑈𝑔𝑔𝑎𝑎𝑎𝑎 𝒒𝒒 = 1
2
𝑘𝑘𝑔𝑔 𝒒𝒒 − 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔

2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒 = �
1
2
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗

1

𝒒𝒒−𝒒𝒒𝑗𝑗
𝑜𝑜 − 1

𝜌𝜌𝑜𝑜

2
if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 ≤ 𝜌𝜌𝑜𝑜

0 if 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 > 𝜌𝜌𝑜𝑜
• Note

• 𝒒𝒒 is the robot configuration, in example: 𝒒𝒒 = 𝑥𝑥,𝑦𝑦
• 𝑘𝑘, 𝜌𝜌𝑜𝑜 > 0
• ‘Goal’ is next point of global path
• 𝒒𝒒 − 𝒒𝒒𝑗𝑗𝑜𝑜 is to the closest point of the object
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔 (See Chap 12.6 of [1])

• Total potential field is the sum of individual potentials

𝑈𝑈 𝒒𝒒 = 𝑈𝑈𝑔𝑔𝑎𝑎𝑎𝑎 𝒒𝒒 + �
𝑗𝑗=1

𝑛𝑛

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒

• Starting point: −2,−4
• Goal point: [5,5]
• 3 obstacles: −2,−3 , 0,5,−0.5 , 3,0
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials

𝑈𝑈 𝒒𝒒 = 𝑈𝑈𝑔𝑔𝑎𝑎𝑎𝑎 𝒒𝒒 + �
𝑗𝑗=1

𝑛𝑛

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗 𝒒𝒒

• Starting point: −2,−4
• Goal point: [5,5]
• 3 obstacles: −2,−3 , 0,5,−0.5 , 3,0
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then

𝐹𝐹 𝒒𝒒 = −∇𝑈𝑈 𝒒𝒒
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Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?

• Point mass: �̈�𝒒 = 𝐹𝐹 𝒒𝒒
• Desired velocity: �̇�𝒒 = 𝐹𝐹 𝒒𝒒
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Local navigation algorithms / artificial potential fields
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Local navigation algorithms / artificial potential fields
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Local navigation algorithms / artificial potential fields
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EMC 2017 – Group 10



Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?
• In the simulation videos we know everything… How to do it in real life?
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Local navigation algorithms / artificial potential fields
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Simulation - MRC 2019 – Group 2



Local navigation algorithms / artificial potential fields

• Artificial potentials
• Amplitude based on distance to object 𝒒𝒒𝑗𝑗𝑜𝑜 and goal 𝒒𝒒𝑔𝑔𝑜𝑜𝑔𝑔𝑔𝑔
• Total potential field is the sum of individual potentials
• The artificial force acting on the robot is then
• How to use that force?
• In the simulation videos we know everything… How to do it in real life?

• How to represent obstacles from laser points?
• Include size of the robot
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Local navigation algorithms / artificial potential fields
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[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, "Robotics: Modelling, Planning and Control," Springer Publishing Company, Incorporated, 2010

Questions?



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

• Reactive collision avoidance based on robot dynamics
• Intuition: certain velocity during certain time, see where we end and select most 

optimal



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be 

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be 

• Possible: velocities are limited by robot’s dynamics
𝑉𝑉𝑠𝑠 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑚𝑚𝑚𝑚𝑛𝑛, 𝑣𝑣𝑚𝑚𝑔𝑔𝑚𝑚 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑚𝑚𝑚𝑚𝑛𝑛,𝜔𝜔𝑚𝑚𝑔𝑔𝑚𝑚

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be

• Possible: velocities are limited by robot’s dynamics
• Admissible: robot can stop before reaching closest obstacle

𝑉𝑉𝑔𝑔 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 �̇�𝑣𝑏𝑏 ∧ 𝜔𝜔 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 �̇�𝜔𝑏𝑏
�̇�𝑣𝑏𝑏 and �̇�𝜔𝑏𝑏 are maximum deceleration values

𝑑𝑑 𝑣𝑣,𝜔𝜔 is distance to closest object

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡, where 𝑣𝑣,𝜔𝜔 have to be

• Possible: velocities are limited by robot’s dynamics
• Admissible: robot can stop before reaching closest obstacle
• Reachable: velocity and acceleration constraints (dynamic window)

𝑉𝑉𝑑𝑑 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑔𝑔 − �̇�𝑣𝑡𝑡,𝑣𝑣𝑔𝑔 + �̇�𝑣𝑡𝑡 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑔𝑔 − �̇�𝜔𝑡𝑡,𝜔𝜔𝑔𝑔 + �̇�𝜔𝑡𝑡
𝑣𝑣𝑔𝑔 and 𝑤𝑤𝑔𝑔 are actual velocities
�̇�𝑣 and �̇�𝜔 are acceleration values

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑔𝑔: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑠𝑠 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑚𝑚𝑚𝑚𝑛𝑛 , 𝑣𝑣𝑚𝑚𝑔𝑔𝑚𝑚 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑚𝑚𝑚𝑚𝑛𝑛 ,𝜔𝜔𝑚𝑚𝑔𝑔𝑚𝑚

𝑉𝑉𝑔𝑔 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 �̇�𝑣𝑏𝑏 ∧ 𝜔𝜔 ≤ 2𝑑𝑑 𝑣𝑣,𝜔𝜔 �̇�𝜔𝑏𝑏
Here �̇�𝑣𝑏𝑏 = 50 ⁄cm 𝑠𝑠2, �̇�𝜔𝑏𝑏 = 60 ⁄d𝑒𝑒𝑒𝑒 𝑠𝑠2

Dark shade: non-admissible velocities

𝑉𝑉𝑔𝑔: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑔𝑔: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space

𝑉𝑉𝑑𝑑 = 𝑣𝑣,𝜔𝜔|𝑣𝑣 ∈ 𝑣𝑣𝑔𝑔 − �̇�𝑣Δ𝑡𝑡, 𝑣𝑣𝑔𝑔 + �̇�𝑣Δ𝑡𝑡 ∧ 𝜔𝜔 ∈ 𝜔𝜔𝑔𝑔 − �̇�𝜔Δ𝑡𝑡,𝜔𝜔𝑔𝑔 + �̇�𝜔Δ𝑡𝑡



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

• Intersection of 𝑉𝑉s,𝑉𝑉𝑔𝑔 and 𝑉𝑉𝑑𝑑 provides search space 𝑉𝑉r
𝑉𝑉𝑟𝑟 = 𝑉𝑉s ∩ 𝑉𝑉𝑔𝑔 ∩ 𝑉𝑉𝑑𝑑

→ gives 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 ,𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 ∈ 𝑉𝑉𝑟𝑟 at each time step

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II

𝑉𝑉𝑔𝑔: admissible velocities
𝑉𝑉𝑟𝑟: reachable velocities
𝑉𝑉𝑠𝑠: velocity search space

→ 𝑉𝑉𝑟𝑟 = 𝑉𝑉s ∩ 𝑉𝑉𝑔𝑔 ∩ 𝑉𝑉𝑑𝑑 (white area)
→ 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 ,𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 ∈ 𝑉𝑉𝑟𝑟



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

𝑥𝑥 0 ,𝑦𝑦 0 and 𝜃𝜃 0 are current position

for 𝑖𝑖 = 1:𝑁𝑁
for 𝑗𝑗 = 1: len 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟

for 𝑘𝑘 = 1: len 𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟
𝑥𝑥 𝑖𝑖 + 1 = 𝑥𝑥 𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑗𝑗 ⋅ cos 𝜃𝜃 𝑖𝑖
𝑦𝑦 𝑖𝑖 + 1 = 𝑦𝑦 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑗𝑗 ⋅ sin 𝜃𝜃 𝑖𝑖
𝜃𝜃 𝑖𝑖 + 1 = 𝜃𝜃 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑘𝑘

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space

𝑥𝑥 0 ,𝑦𝑦 0 and 𝜃𝜃 0 are current position

for 𝑖𝑖 = 1:𝑁𝑁
for 𝑗𝑗 = 1: len 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟

for 𝑘𝑘 = 1: len 𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟
𝑥𝑥 𝑖𝑖 + 1 = 𝑥𝑥 𝑖𝑖 + 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑗𝑗 ⋅ cos 𝜃𝜃 𝑖𝑖
𝑦𝑦 𝑖𝑖 + 1 = 𝑦𝑦 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑗𝑗 ⋅ sin 𝜃𝜃 𝑖𝑖
𝜃𝜃 𝑖𝑖 + 1 = 𝜃𝜃 𝑖𝑖 + Δ𝑡𝑡 ⋅ 𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 𝑘𝑘

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable 
• Generate search space
• Maximize objective function 𝐺𝐺 within dynamic window

𝐺𝐺 𝑣𝑣,𝜔𝜔 = 𝜎𝜎 𝑘𝑘ℎℎ 𝑣𝑣,𝜔𝜔 + 𝑘𝑘𝑑𝑑𝑑𝑑 𝑣𝑣,𝜔𝜔 + 𝑘𝑘𝑠𝑠𝑠𝑠 𝑣𝑣,𝜔𝜔
• ℎ 𝑣𝑣,𝜔𝜔 : target heading towards goal
• 𝑑𝑑 𝑣𝑣,𝜔𝜔 : distance to closest obstacle on trajectory
• 𝑠𝑠 𝑣𝑣,𝜔𝜔 : forward velocity
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Left wall

Right wall I Right wall II



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡: possible, admissible, reachable
• Generate search space
• Maximize objective function 𝐺𝐺 within dynamic window
• Again, we have all information in simulation videos…
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach
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D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

• How to represent the obstacles?
• Available information: 

• Laser range points
• Trajectory from discretized velocities might fall between two points

• Also, incorporate the size of the robot
• In the video, robot is a point mass



Local navigation algorithms / dynamic window approach
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• Reactive collision avoidance based on robot dynamics
• Consider velocities (𝑣𝑣,𝜔𝜔) during 𝑡𝑡 : possible, admissible, reachable
• Generate search space
• Maximize objective function 𝐺𝐺 within dynamic window
• Again, we have all information in simulation videos…
• Implementation

• How to check if a path is valid?
• How discretize 𝑣𝑣𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟 and 𝜔𝜔𝑟𝑟𝑔𝑔𝑛𝑛𝑔𝑔𝑟𝑟?
• How to account for robot size?

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.



Local navigation algorithms / dynamic window approach

Questions?
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Left wall

Right wall I Right wall II



Local navigation algorithms / vector field histograms

• Treat objects as vectors in a 2D Cartesian histogram grid, and create a 
polar histogram to determine possible ‘open spaces’ to get to the goal
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑚𝑚,𝑗𝑗 of that cell containing an obstacle
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑚𝑚,𝑗𝑗 of that cell containing an obstacle
• Active window
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Note that the active window should be square and centered around robot, drawing is 
purely for visualization of the approach



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• each cell holds a certainty (or confidence) value 𝑐𝑐𝑚𝑚,𝑗𝑗 of that cell containing an obstacle
• Active window
• Each active cell is treated as obstacle vector with 

• direction 𝛽𝛽𝑚𝑚,𝑗𝑗 = atan2 𝑦𝑦𝑗𝑗 − 𝑦𝑦0, 𝑥𝑥𝑚𝑚 − 𝑥𝑥0
• magnitude 𝑚𝑚𝑚𝑚,𝑗𝑗 = 𝑐𝑐𝑚𝑚,𝑗𝑗2 𝑎𝑎 − 𝑏𝑏𝑑𝑑𝑚𝑚,𝑗𝑗

• Choose 𝑎𝑎, 𝑏𝑏 such that 𝑎𝑎 − 𝑏𝑏𝑑𝑑𝑚𝑚𝑔𝑔𝑚𝑚 = 0

• 𝑑𝑑𝑚𝑚𝑔𝑔𝑚𝑚 = 2
2

𝑤𝑤𝑠𝑠 − 1
• see [1] for further explanation on the values of 𝑎𝑎 and 𝑏𝑏
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼

𝛼𝛼 =
360°
𝑛𝑛

𝑛𝑛 is an integer, 𝑘𝑘 = 0,1,2, … ,𝑛𝑛 − 1
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑚𝑚,𝑗𝑗 and 𝑘𝑘

𝑘𝑘 = int
𝛽𝛽𝑚𝑚,𝑗𝑗
𝛼𝛼
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑚𝑚,𝑗𝑗 and 𝑘𝑘
• For each sector 𝑘𝑘, polar obstacle density ℎ𝑘𝑘 is

ℎ𝑘𝑘 = �
𝑚𝑚,𝑗𝑗

𝑚𝑚𝑚𝑚,𝑗𝑗

Note: needs smoothing due to discrete map, see [1]
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram

• Sector 𝑘𝑘 corresponds to angular resolution 𝛼𝛼
• Link between each cell 𝑐𝑐𝑚𝑚,𝑗𝑗 and 𝑘𝑘
• For each sector 𝑘𝑘, polar obstacle density ℎ𝑘𝑘
• Resulting histogram

• Note that the figure only shows −50°, 50° , but the histogram is actually 
−180°, 180°

• Note that no smoothing is applied
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold

MRC 2024 - Lecture 3 - Local Navigation67

[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
• Angle 𝜃𝜃 is the middle of candidate valley

𝜃𝜃 =
1
2
𝛼𝛼 𝑘𝑘𝑔𝑔 + 𝑘𝑘𝑟𝑟

𝑘𝑘𝑔𝑔 and 𝑘𝑘𝑟𝑟 are left and right boundary of selected valley
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction

• Smoothed polar histogram 𝐻𝐻′ 𝑘𝑘 [1]
• Candidate valleys: 𝐻𝐻′ 𝑘𝑘 below threshold
• Angle 𝜃𝜃 is the middle of candidate valley

𝜃𝜃 =
1
2
𝛼𝛼 𝑘𝑘𝑔𝑔 + 𝑘𝑘𝑟𝑟

𝑘𝑘𝑔𝑔 and 𝑘𝑘𝑟𝑟 are left and right boundary of selected valley

• Select the valley with closest match to goal direction
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[1] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June 1991, doi: 10.1109/70.88137.



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control

• Anticipatory reduction: 𝑣𝑣′ = 𝑉𝑉𝑚𝑚𝑔𝑔𝑚𝑚 1 − 1
ℎ𝑚𝑚

min ℎ𝑐𝑐′ ,ℎ𝑚𝑚
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ℎ𝑐𝑐′ : obstacle density in current direction of travel
ℎ𝑚𝑚: empirically determined constant to obtain sufficient speed reduction



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control

• Anticipatory reduction: 𝑣𝑣′ = 𝑉𝑉𝑚𝑚𝑔𝑔𝑚𝑚 1 − 1
ℎ𝑚𝑚

min ℎ𝑐𝑐′ ,ℎ𝑚𝑚

• Steering speed reduction: 𝑣𝑣 = 𝑣𝑣′ 1 − �̇�𝜃
�̇�𝜃𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑉𝑉𝑚𝑚𝑚𝑚𝑛𝑛
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ℎ𝑐𝑐′ : obstacle density in current direction of travel
ℎ𝑚𝑚: empirically determined constant to obtain sufficient speed reduction
�̇�𝜃: steering rate



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Example

• Grid world map to create histogram grid
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Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Example

• Grid world map to create histogram grid
• Assumed that obstacle position is fully known
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Local navigation algorithms / vector field histograms
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Orientation is in world frame



Local navigation algorithms / vector field histograms

• 2D Cartesian histogram grid
• Polar histogram
• Steering direction
• Velocity control
• Implementation considerations

• Again, think about the size of the robot
• How to create the Cartesian histogram grid 

from sensor data?
• What is the desired angle if there are no 

obstacles in the active window?
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Local navigation algorithms / vector field histograms

Questions?
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields 

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths

• Dynamic Window Approach
• Generate feasible action space based on robot dynamics with constant velocity
• Considers robot dynamics → collision-free and feasible trajectories
• Requires accurate sensor data, might struggle with densely-populated environments
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Local navigation algorithms / comparison of 
discussed approaches
• Artificial Potential Fields

• Repulsion from objects and attraction to goal
• Simple and computationally efficient
• Suffers from local minimal and not optimal paths

• Dynamic Window Approach
• Generate feasible action space based on robot dynamics with constant velocity
• Considers robot dynamics → collision-free and feasible trajectories
• Requires accurate sensor data, might struggle with densely-populated environments

• Vector Field Histograms
• Create polar histogram of confidence on object location
• Computationally efficient, robust to noisy sensor data
• Can struggle with narrow passages and sharp corners
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Local navigation algorithms / other possible approaches

• Optimization based
• Minimize objective function limited by constraints and system 

dynamics to find the ‘optimal’ path or trajectory
• Objective function: 

• Distance/time to goal,
• Smoothness of trajectory, 
• Comfort (acceleration/jerk),
• Safety related.
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min�
0

𝑇𝑇

𝐽𝐽 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡

subject to
𝑥𝑥 0 = 𝑥𝑥0

�̇�𝑥 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡
𝑒𝑒 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 ≤ 0
𝑢𝑢 ≤ 𝑢𝑢 𝑡𝑡 ≤ 𝑢𝑢
𝑥𝑥 ≤ 𝑥𝑥 𝑡𝑡 ≤ 𝑥𝑥



• Optimization based
• Learning based

• Relies heavily on training sensor data, 
• Train a learning model (e.g., neural network) to

• Predict behaviour of environment
• Detect obstacles
• Decision-making

• Based on real-life sensor data, create necessary output
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Local navigation algorithms / other possible approaches
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https://www.youtube.com/watch?v=FwT4TSRsiVw



• Optimization based
• Learning based
• Note:

• We have explained three approaches from a wide range of possibilities
• In the exercises, you are allowed to implement approaches not treated in this lecture
• But note that more complex is not necessarily better..
• Additionally, note that the explained algorithms directly provide control outputs
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Local navigation algorithms / other possible approaches



Footnote: world representation

• All sensor info treated the same
• In more complex environments different objects should be treated 

differently based on their semantic context
• E.g., keep more distance to humans.
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Recap

• What is the robot navigation problem?
• Find a feasible path or trajectory from a given initial pose (A) to the desired final pose (B)

• What is the goal of local navigation?
• Go from A to B using the global path as a guide

• Local navigation algorithms: properties
• Local navigation algorithms: examples

• Artificial potential fields
• Dynamic window approach
• Vector field histogram
• Optimization and learning based methods
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Assignment

• Divide your group into two (equal sized) groups
• Enable your robot to drive through a corridor to a goal position by 

implementing two different local navigation algorithms (one by each 
subgroup)

• Answer the provided questions, provide videos of simulations and testing 
on the field, and upload your code (with comments!)

• Final remark: 
• You will use one of the algorithms in the final challenge
• Create a function for each algorithm (which use the same input + output) to enable 

easy implementation and testing
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