

Contents

Robot algorithms and examples in practice:

- Localization
- Feature detection and tracking
- Robot motion planning and control

 Goal: provide an overview of algorithms and techniques used for mobile robot control in practice

Robot localization

- Robots use proprioceptive sensors for local motion sensing
- Combined with exteroceptive sensors to associate with external world in which task is defined

Localization means:

- Making associations between sensor-data features and objects
- Infer the location of things based on this sensor data

What **algorithms** can we apply to this problem?

Robot localization

- Making associations between sensor-data features and objects
- Infer the location of things based on this sensor data

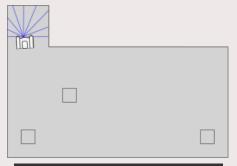
'Classical' localization formulation:

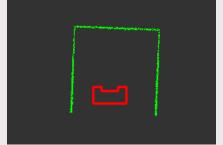
"How to infer the robot pose from sensor data?"

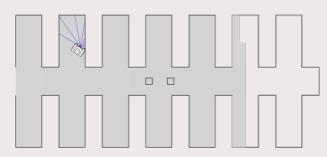
This is challenging because:

- We often cannot directly sense the robot pose
- What we can sense is obscured by noise
- What we sense does not uniquely determine the robot pose
- Dynamic objects are not on the map

Is every localization problem the same?







Classical taxonomy of localization problem

- Tracking keeping track of the robot pose starting from known location
 - Scan matching / Kalman filters / Particle filters
- Global localization Finding the robot pose without initial knowledge
 - Particle filters / Multiple hypothesis kalman filters
- Kidnapped robot problem Changing the robot pose without informing it
 - Heuristic solutions

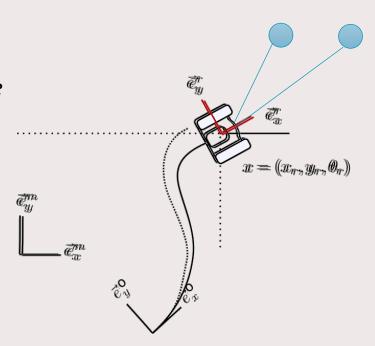
All are **inference** and **data association** problems – just different levels of **prior knowledge**

Robot pose

- $x=(x_r,y_r,\theta_r)$ w.r.t. a reference frame
- Convention: First translate then rotate in place

$$T = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & x \\ \sin(\theta) & \cos(\theta) & y \\ 0 & 0 & 1 \end{bmatrix}$$

- Odometry provides a drifted pose...
 ... w.r.t. wherever the robot was turned on
- Sensors can help eliminate drift by using a map



Working with odometry

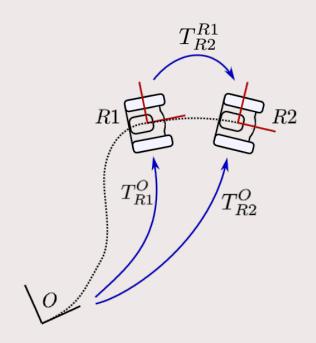
- Convert **odometry** to **relative poses** at sample times
- Pre-multiply with inverse odometry at t1, to obtain the relative pose between time instant t1 and t2:

$$T_{R2}^{O} = T_{R1}^{O} T_{R2}^{R1}$$

$$(T_{R1}^{O})^{-1} T_{R2}^{O} = (T_{R1}^{O})^{-1} T_{R1}^{O} T_{R2}^{R1} = T_{R2}^{R1}$$

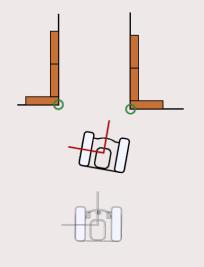
• If we know the robot pose at time t1 on the map, we can easily obtain an odometry estimate for t2

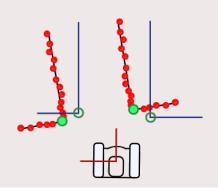
$$T_{R2}^M = T_{R1}^M T_{R2}^{R1}$$



Eliminating drift using the map

- The location in the world (top) will not match the odometry perfectly (bottom)
- Can we use the laserscan to correct for this?
- Find the correction that transforms the scan to the map, and use this to correct the robot pose in the map!
- But how do we do this?
- Possibility: extract point features and do point registration
- E.g.: use a split-and-merge procedure to extract corner points and find the correction that minimizes the squared distance between scan and map





Basic feature extraction sketch

```
segments = [(p1,pend)]
While true:
       newsegments =[]
       for segment in segments[]:
               for point in segment.pointrange()
                       if distance(segment, point) > threshold
                              newsegments.update(segment, point)
               endfor
       endfor
       if newsegments = []:
               return segments
       else:
               segments.update(newsegments)
endwhile
```


Point registration in 2D

• Minimize the distance over t=(x,y) and heta for corresponding points $p_i,\ m_i$

$$\min_{t,\theta} \sum_{i=1}^{N} (R(\theta)p_i + t - m_i)^T (R(\theta)p_i + t - m_i)$$

First find center-of-mass of points:

$$c_m = rac{1}{N} \sum_i \left[egin{array}{c} m_i^x \ m_i^y \end{array}
ight], \;\; c_p = rac{1}{N} \sum_i \left[egin{array}{c} p_i^x \ p_i^y \end{array}
ight]$$

Rotation matrix can be obtained through Singular Value Decomposition:

$$H = \sum_{i=1}^{N} (p_i - c_p)(m_i - c_m)^T$$

$$[U, S, V] = \operatorname{svd}(H), \quad R = VU^T$$

Translation part becomes:

$$t = c_m - Rc_p$$

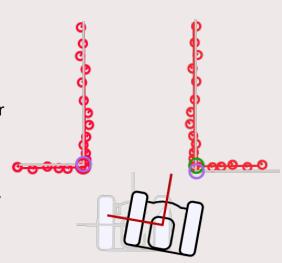
10

Feature matching variants are used often in practice (e.g. iterative-closest-point), but have limitations:

- What will happen if we have only one point?
- What will happen if we match wrong points?
- How can we incorporate knowledge of old pose uncertainty and sensor uncertainty?

Common strategies:

- Represent multiple hypotheses and throw away those that are unlikely
- Use a probablisitic framework to represent measurement uncertainty and robot pose uncertainty



Modeling uncertainty

Continuous representation

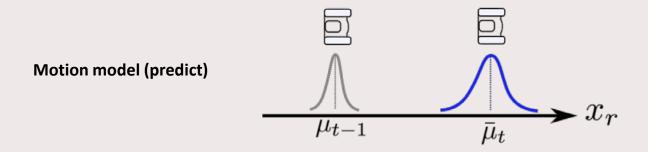
- Model robot pose as multivariate Gaussian over x, y, theta
- Model odometry and measurement uncertainties as Gaussian white noise
- Use a Kalman filter to fuse odometry and laser -> "recursive prediction correction"

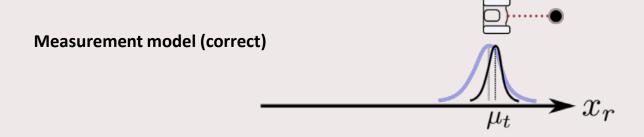
Discrete / sampled representation

- Model robot pose as multiple distinct hypotheses
- Evaluate the likelihood of the hypotheses given the measurements
- Create new hypotheses as needed and remove unlikely ones

Q: Which of these models is most adequate for the problem we are solving?

Gaussian filtering with features: Extended Kalman filters





Gaussians

$$p(x) \sim N(\mu, \sigma^2):$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

Multivariate

The data association problem

Problem so far: we assumed known data associations

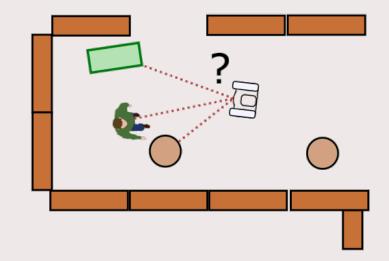
Often we can retrieve the correct data association:

- nearest neighbor
- Uncertainty-based (choose not to make one)

Making a wrong association can be a big problem!

Multiple data association hypotheses give rise to multimodal probabilities!

How can we deal with this?



Discrete representation: particle filters

Brute-force implementation of recursive filter

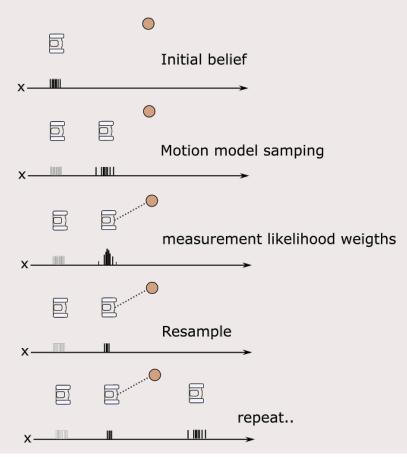
Represents the **belief** as **weighted particles** (often 100+)

Particles are discrete **hypotheses** about the state

Bayesian filter steps

- Particles get propagated according to motion model
- Particles get likelihood weights based on sensor information
- Requires a stochastic resampling step (tuning parameter)
- Low weight particles removed, high weight particles cloned

Successful in **low-dimensional** state spaces **Tuning:** How many particles? How often resampling?



The right solution for the problem

We challenge you to abstract the problem using the right models

- Would scan / feature matching be adequate?
- Can continuous representations increase robustness?
- Or are discrete representations better suited?
- How many hypotheses do we need? 2? 500?
- We don't expect you to implement all possible solutions
- Rather, think about how your robot can be robust and explainable

References

Elfring, J., Torta, E., Molengraft, M. v. d., (2021) Particle Filters: A Hands-On Tutorial https://www.mdpi.com/1424-8220/21/2/438

Thrun, S., Burgard, W.,, Fox, D. (2005). *robotics*. Cambridge, Mass.: MIT Press. ISBN: 0262201623 9780262201629 *Probabilistic*

