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Robot algorithms and examples in practice:

• Localization 

• Feature detection and tracking

• Robot motion planning and control

• Goal: provide an overview of algorithms and techniques used for mobile 
robot control in practice
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• Robots use proprioceptive sensors for local motion sensing
• Combined with exteroceptive sensors to associate with external 

world in which task is defined

Localization means:

• Making associations between sensor-data features and objects
• Infer the location of things based on this sensor data

What algorithms can we apply to this problem? 
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Robot localization

• Making associations between sensor-data features and objects
• Infer the location of things based on this sensor data

‘Classical’ localization formulation:
“How to infer the robot pose from sensor data?”

This is challenging because: 
• We often cannot directly sense the robot pose
• What we can sense is obscured by noise
• What we sense does not uniquely determine the robot pose 
• Dynamic objects are not on the map

Is every localization problem the same?
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Classical taxonomy of localization problem

• Tracking - keeping track of the robot pose starting from known location
• Scan matching / Kalman filters / Particle filters

• Global localization – Finding the robot pose without initial knowledge
• Particle filters / Multiple hypothesis kalman filters

• Kidnapped robot problem – Changing the robot pose without informing it
• Heuristic solutions

All are inference and data association problems – just different levels of prior 
knowledge
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Robot pose
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• w.r.t. a reference frame

• Convention: First translate – then rotate in place

• Odometry provides a drifted pose…
… w.r.t. wherever the robot was turned on

• Sensors can help eliminate drift by using a map



Working with odometry
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• Convert odometry to relative poses at sample times

• Pre-multiply with inverse odometry at t1, to obtain the relative 
pose between time instant t1 and t2:

• If we know the robot pose at time t1 on the map, we can easily 
obtain an odometry estimate for t2



Eliminating drift using the map

• The location in the world (top) will not match the odometry perfectly 
(bottom)

• Can we use the laserscan to correct for this? 
• Find the correction that transforms the scan to the map, and use this to 

correct the robot pose in the map!

• But how do we do this?
• Possibility: extract point features and do point registration

• E.g.: use a split-and-merge procedure to extract corner points and find 
the correction that minimizes the squared distance between scan and 
map
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Basic feature extraction sketch

segments = [(p1,pend)]
While true:

newsegments =[]
for segment in segments[]:

for point in segment.pointrange()
if distance(segment, point) > threshold

newsegments.update(segment, point)
endfor

endfor
if newsegments = []:

return segments
else:

segments.update(newsegments)
endwhile
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Point registration in 2D
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• Minimize the distance over                      and      for corresponding points

First find center-of-mass of points:

Rotation matrix can be obtained through Singular Value Decomposition:

Translation part becomes:
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Feature matching variants are used often in practice (e.g. iterative-closest-
point), but have limitations:

• What will happen if we have only one point?

• What will happen if we match wrong points?

• How can we incorporate knowledge of old pose uncertainty and sensor 
uncertainty?

Common strategies:
• Represent multiple hypotheses and throw away those that are unlikely

• Use a probablisitic framework to represent measurement uncertainty 
and robot pose uncertainty



Modeling uncertainty

Continuous representation
• Model robot pose as multivariate Gaussian over x, y, theta
• Model odometry and measurement uncertainties as Gaussian white noise
• Use a Kalman filter to fuse odometry and laser -> “recursive prediction – correction”

Discrete / sampled representation
• Model robot pose as multiple distinct hypotheses
• Evaluate the likelihood of the hypotheses given the measurements
• Create new hypotheses as needed and remove unlikely ones

Q: Which of these models is most adequate for the problem we are solving?
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Gaussian filtering with features: Extended Kalman filters
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Motion model (predict)

Measurement model (correct)



The data association problem

Problem so far: we assumed known data associations

Often we can retrieve the correct data association:
• nearest neighbor
• Uncertainty-based (choose not to make one)

Making a wrong association can be a big problem!

Multiple data association hypotheses give rise to 
multimodal probabilities!

How can we deal with this? 
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Discrete representation: particle filters

Brute-force implementation of recursive filter

Represents the belief as weighted particles (often 100+)

Particles are discrete hypotheses about the state

Bayesian filter steps
• Particles get propagated according to motion model
• Particles get likelihood weights based on sensor information
• Requires a stochastic resampling step (tuning parameter)
• Low weight particles removed, high weight particles cloned 

Successful in low-dimensional state spaces
Tuning: How many particles? How often resampling? 
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The right solution for the problem

We challenge you to abstract the problem using the right models

• Would scan / feature matching be adequate?
• Can continuous representations increase robustness?
• Or are discrete representations better suited?
• How many hypotheses do we need? 2? 500?

• We don’t expect you to implement all possible solutions
• Rather, think about how your robot can be robust and explainable
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