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Abstract: The paper presents TRUETIME, a MATLAB /Simulink-based simulator for
real-time control systems. TRUETIME makes it possible to simulate the temporal behavior
of multi-tasking real-time kernels containing controller tasks and to study the effects of
CPU and network scheduling on control performance. The simulated real-time kernel is
event-driven and can handle external interrupts as well as fine-grained details such as
context switches. Arbitrary scheduling policies may be defined, and the control tasks may
be implemented using C functions, M functions, or Simulink block diagrams. A number
of examples that illustrate the use of TRUETIME are presented.Copyright c
 2002 IFAC
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1. INTRODUCTION

Most computer control systems are embedded systems
where the computer is a component within a larger
engineering system. The controllers are often imple-
mented as one or several tasks on a microprocessor us-
ing a real-time kernel or a real-time operating system
(RTOS). In most cases the microprocessor also con-
tains other tasks for other functions, e.g., communi-
cation and user interfaces. The kernel or OS typically
uses multiprogramming to multiplex the execution of
the different tasks on a single CPU. The CPU time and
the communication bandwidth, hence, can be viewed
as shared resources which the tasks compete for.

Computer-based control theory normally assumes
equidistant sampling intervals and negligible or con-
stant control delays, i.e., the latency between the sam-
pling of the inputs to the controller and the generation
of the outputs. However, this can seldom be achieved
in practice. Tasks interfere with each other through
preemption and blocking due to communication. Ex-
ecution times may be data-dependent or vary due to,
e.g., the uses of caches. The result of this isjitter in
sampling periods and latencies. An additional cause
of this temporal non-determinism is the increasing
use of commercial off-the-shelf (COTS) components
in control systems, e.g., general purpose operating

systems such as Windows and Linux and general pur-
pose network protocols such as Ethernet. These are
designed to optimize average-case performance rather
than worst-case performance, and therefore increase
the non-determinism.

The effects of this type of temporal non-determinism
on control performance are often very hard, if not
impossible, to investigate analytically. A natural ap-
proach is then to instead use simulation. However, to-
days simulation tools make it difficult to simulate the
true temporal behavior of control loops. What is nor-
mally done is to introduce time delays in the control
loop representing average-case or worst-case delays.

In this paper the new simulation toolbox TRUETIME

is presented. TRUETIME, which is based on MAT-
LAB/Simulink, makes it possible to simulate the tem-
poral behavior of a multi-tasking real-time kernel con-
taining controller tasks. The controller tasks control
processes modeled as ordinary Simulink blocks. Dif-
ferent scheduling policies may be used, e.g., priority-
driven or deadline-driven scheduling. The execution
times of the controller tasks can be modeled as being
constant or time-varying, using some suitable proba-
bility distribution.The effects of context switching and
interrupt handling are taken into account, as well as
task synchronization using events and monitors. With
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TRUETIME it is also possible to simulate the tim-
ing behavior of communication networks used in, e.g.,
networked control loops.

TRUETIME can be used for several purposes: to in-
vestigate the true effects of timing non-determinism
on control performance, to develop compensation
schemes that adjust the controller dynamically based
on measurements of actual timing variations, to exper-
iment with new, more flexible approaches to dynamic
scheduling, e.g., feedback scheduling (Ekeret al.,
2000) and Quality-of-Service (QoS) based scheduling
approaches, and to simulate event-based control sys-
tems, e.g., combustion engine control systems and dis-
tributed controllers.

1.1 Related work

While numerous tools exist that support either simu-
lation of control systems (e.g. Simulink) or simula-
tion of real-time scheduling (e.g. STRESS (Audsley
et al., 1994) and DRTSS (Storch and Liu, 1996)) very
few tools support co-simulation of control systems and
real-time scheduling.

An early, tick-based prototype of TRUETIME was pre-
sented in (Eker and Cervin, 1999). Since it was not
event-based this early version had very little sup-
port for interrupt handling and could not handle fine-
grained simulation details. Also, there was no support
for simulation of networks.

The RTSIM real-time scheduling simulator (a stand-
alone C++ program) has recently been extended with
a numerical module (based on the Octave library)
that supports simulation of continuous dynamics, see
(Palopoliet al., 2000). However, it lacks a graphical
plant modeling environment, and so far its network
capabilities are limited.

1.2 Outline of the paper

The simulation environment is described in some de-
tail in Section 2. Three examples are then given to
illustrate the use of the simulator. The first example
treats scheduling during overload conditions. The sub-
ject of the second example is networked control sys-
tem, whereas the last example evaluates an improved
scheduling technique for controller tasks.

2. THE SIMULATOR

The TRUETIME simulation environment offers two
Simulink blocks: a computer block and a network
block, the interfaces of which are shown in Fig. 1. The
input signals are assumed to be discrete, except the sig-
nals connected to the A/D port which may be continu-
ous. All output signals are discrete. The Schedule and
Monitors ports provide plots of the allocation of com-
mon resources (CPU, monitors, network) during the
simulation (c.f. Figs. 4, 7, and 9).

Both blocks are event-driven and execute based on in-
ternal and external events. Internal events correspond
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Fig. 1 The interfaces to the Simulink blocks. The Schedule and
Monitors ports provide plots of the allocation of common
resources (CPU, monitors, network) during the simulation.

to clock interrupts caused, e.g., by the release of a task
from the time queue or the expiry of a timer. External
events correspond to external interrupts which occur
when signals connected to the external interrupt port
or network ports change value.

The blocks are variable-step, discrete, MATLAB S-
functions written in C, the Simulink engine being used
only for timing and interfacing with the rest of the
model. It should thus be easy to port the blocks to other
simulation environments, provided they support event
detection (zero-crossing detection).

2.1 The computer block

The computer block S-function simulates a computer
with a flexible real-time kernel executing user-defined
threads and interrupt handlers. Threads may be peri-
odic or aperiodic and are used to simulate controller
tasks, communication tasks etc. Interrupt handlers are
used to serve internal and external interrupts. The ker-
nel maintains a number of data structures commonly
found in real-time kernels, including a ready queue, a
time queue, and records for threads, interrupt handlers,
events, monitors etc.

The code executed during simulation consists of user-
written functions, which have been associated with
threads and interrupt handlers. These functions can be
written in C (for speed) or as M code (for ease of use).

Execution occurs at three distinct priority levels: in-
terrupt level (highest), kernel level, and thread level
(lowest). The execution may be preemptive or non-
preemptive. At the interrupt level, interrupt handlers
are scheduled according to fixed priorities, whereas at
thread level dynamic-priority scheduling may be used.
The thread priorities are determined by a user-defined
priority function, which is a function of the attributes
of a thread. This makes it easy to simulate different
scheduling policies. For example, a function returning
the absolute deadline of a thread implements deadline-
driven scheduling.
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Fig. 2 The execution of the code associated with threads and
interrupt handlers is modeled by a number of code segments
with different execution times. Execution of user code occurs
at the beginning of each code segment.

Threads Each thread is defined by a set of attributes
most of which are initialized by the user when the
thread is created. These attributes include: a name, a
release time, relative and absolute deadlines, an ex-
ecution time budget, a period (if the thread is peri-
odic), a priority (if fixed-priority scheduling is used),
and the user code associated with the thread. Some of
the attributes, such as the release time and the execu-
tion time budget are constantly updated by the kernel
during simulation. The other attributes can be changed
by function calls from the user code, but are otherwise
kept constant.

An arbitrary data structure may be defined and at-
tached to each thread to represent the local mem-
ory of the thread. Other threads may access this data,
which can be used for system-level communication be-
tween threads to support simulation of, e.g., feedback
scheduling. It is further possible to associate three dif-
ferent interrupt handlers with each thread: a code ter-
mination handler, a deadline overrun handler, and an
execution time overrun handler.

Interrupt handlers When an internal or external
interrupt occurs the corresponding interrupt handler
is activated and scheduled by the kernel. Similar to
threads, interrupt handlers have a set of basic at-
tributes: name, priority, and the associated user code.
External interrupts also have a latency, during which
they are insensitive to new invocations.

Code The execution of the user code associated with
threads and interrupt handlers is divided into segments
with different simulated execution times as shown in
Fig. 2. The execution times can be constant, random
or data-dependent. Execution of user code occurs at
the beginning of each code segment. The next segment
is not executed until the time associated with the pre-
vious segment has elapsed in the simulation. This con-
struction makes it possible to model the timely aspects
of the code that are relevant for the interaction with
other tasks. This include, e.g., computations, input and
output actions, awaiting events, and execution in criti-
cal regions using monitors. After execution of the last
segment the code termination handler of the thread is
activated. For periodic threads this simply updates the
release and deadline and puts the thread to sleep until
next period. Execution will then again begin in the first
segment.

Table 1 Examples of kernel primitives (pseudo code) that can be
called from threads and interrupt handlers.

ttAnalogOut(ch,value) ttAnalogIn(ch)

ttWaitUntil(time) ttCurrentTime()

ttSetPriority(prio) ttSetRelease(time)

ttNwSendMsg(msg, node) ttNwGetMsg()

ttEnterMonitor(mon) ttExitMonitor(mon)

ttAwait(event) ttCause(event)

2.2 The Network Block

The network model is similar to the real-time kernel
model, albeit simpler. The network block is event-
driven and executes when messages enter or leave
the network. A send queue is used to hold all mes-
sages currently enqueued in the network (c.f. the ready
queue in the real-time kernel). A message contains in-
formation about the sending and the receiving com-
puter node, user data (typically measurement signals
or control signals), transmission time, and optional
real-time attributes such as a priority or a deadline.

A user-defined priority function is used to determine
the order in which the enqueued messages should be
transmitted. This way, it is easy to model different
network policies. When the simulated transmission
of a message has completed, it is put in a buffer at
the receiving computernode, which is notified by an
external interrupt. Transmissions can be preemptive or
non-preemptive, the latter being default.

2.3 Initialization

Before the start of a simulation, the computer and
network blocks must be initialized. This is done in a
script for each block. Initialization involves specifying
the number of input and output ports, choosing priority
functions, defining code functions, creating threads,
interrupt handlers, etc.

Writing a code function A code function takes
as input argument the segment to be executed, and
returns the execution time of this segment. The kernel
provides a set of real-time primitives that can be called
from the user code, see Table 1 for some examples. A
code function for a simple controller is given below

function exectime = myController(seg)
switch (seg),

case 1,
y = ttAnalogIn(1);
u = calculateOutput(y);
exectime = 0.002 % execution time

case 2,
ttAnalogOut(1,u);
updateState(y);
exectime = 0.003 % execution time

case 3,
exectime = -1; % code termination

end



Fig. 3 Controllers represented using ordinary discrete Simulink
blocks may be used directly in TRUETIME to evaluate timing
performance. The example above shows a PI-controller.

The input-output latency in the example above is
always at least 2 ms, this being the execution time of
the first segment. However, preemption from higher-
priority threads or interrupts may lead to a longer
delay.

Graphical controller representation As an alterna-
tive to textual implementation of the controller algo-
rithms, TRUETIME also allows for graphical represen-
tations using discrete Simulink blocks. Block systems
are called from the code function using the primitive
ttCallBlockSystem . A block diagram of a PI-
controller is shown in Fig 3, and the corresponding use
in a code function is given below

function exectime = piController(seg)
switch (seg),

case 1,
in(1) = ttAnalogIn(1);
in(2) = ttAnalogIn(2);
out = ttCallBlockSystem(in,’PI_ctrl’);
exectime = out(2);

case 2,
ttAnalogOut(1,out(1));
exectime = 0.003;

case 3,
exectime = -1; % code termination

end

3. SCHEDULING DURING OVERLOAD
CONDITIONS

This example treats scheduling of tasks with long, but
rare, worst-case execution times. In these cases tra-
ditional scheduling analysis, based on worst-case ex-
ecution times, becomes very restrictive. An alterna-
tive approach, called theConstant Bandwidth Server
(CBS) was presented in (Abeni and Buttazzo,1998).
This server approach is straightforward to simulate us-
ing TRUETIME.

In the CBS scheme each task is handled by a dedi-
cated server characterized by a budget,cs, a maximum
budget,Qs, and a period,Ts. Each server also has a
dynamically changing deadline. When the task asso-
ciated with a server executes longer than its assigned
budget, the budget is recharged and a new deadline
is generated. The CBS scheme uses deadline-driven
scheduling based on the server deadlines. The gen-
eration of a new deadline may therefore allow other
tasks to run. CBS guarantees that no task consumes
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Fig. 4 Comparison of schedules generated by CBS and EDF
during an overrun for the interfering thread. Using CBS the
controller thread is unaffected by the overrun.

more than the bandwidth assigned to its server,Us =

Qs=Ts, i.e., if a task has an overrun it will not affect
other tasks. Hence, CBS conceptually divides the CPU
into virtual sub-CPU’s.

The CBS scheme is simulated in TRUETIME using
the execution time budget and execution time over-
run handlers associated with threads. When a thread
executes longer than its assigned budget an interrupt
is generated. The corresponding interrupt handler then
recharges the budget and updates the server deadline.

As an example, consider stabilizing control of an
inverted pendulum with the state-space realization

_x =

8>>: 0 1

1 0

9>>;x+

8>>: 0

1

9>>;u+

8>>: 0

1

9>>;w

y =

8: 1 0

9;x+ v

(1)

wherew andv are independent zero-mean white noise
processes with variances 1 and 0.1 respectively. A
LQG-controller with sampling period 100 ms is de-
signed in order to minimize the quadratic cost function

J(t) =

Z t

0

xT (s)Q1x(s) + u(s)Q2u(s)ds (2)

with Q1 = 5I andQ2 = 0:01.

The execution time of the controller thread is 20 ms
and it is scheduled together with an interfering thread
with period 400 ms and a nominal execution time of
100 ms. We further assume that the interfering thread
occasionally has a very long execution time of 700 ms
occurring with a probability of 5 percent.

In a first simulation the tasks are scheduled using
ordinary earliest deadline first scheduling (EDF). Here
the task with the shortest remaining time to its deadline
will run, with the relative deadlines being equal to the
task periods. The effect of an overrun is shown in the
lower part of Fig. 4, where it is seen that the controller
thread misses five samples due to preemption from the
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Fig. 5 A distributed control system with time-driven sensor node
and event-driven actuator and controller nodes. The distur-
bance node generates random high-priority traffic over the net-
work.

interfering thread. Using the CBS approach we get the
desired behavior as seen in the upper part of Fig. 4.
The controller thread is unaffected by the overrun of
the interfering thread. The loss as measured by the cost
function (2) during a simulation of 100 seconds was
reduced by 50 percent using the CBS approach.

4. A NETWORKED CONTROL SYSTEM

This example describes simulation of a distributed
control system, where a DC servo is to be controlled
over a network. The system is shown in Fig. 5 and con-
sists of four nodes. The time-driven sensor node sam-
ples the process periodically and sends the samples to
the controller node over the network. Upon receiving a
sample, the controller computes a control signal which
is sent to the actuator node, where it is subsequently
actuated. The threads executing in the controller and
actuator nodes are both event-driven. There is also a
disturbance node generating random interfering traffic
over the network.

The network is assumed to be of CAN-type, i.e. trans-
mission of simultaneous messages is decided based on
priorities of the packages. The packages generated by
the disturbance node have high priority and occupy 50
percent of the network bandwidth. The PD-controller
executing in the controller node is designed for the
sampling interval 10 ms, which is the sampling inter-
val used in the time-driven sensor node.

Without influence from the interfering node, the
round-trip delay (the delay from sampling to actua-
tion) will be fairly constant. Assume that the round-
trip delay in this case is equal to 3.5 ms, which will
lead to satisfactory control performance. Next, con-
sider influence from the disturbance node. Assume fur-
ther, that an interfering, high-priority activity (period
7 ms, execution time 3 ms) executes in the controller
node. The round-trip delay will now be longer on aver-
age and time-varying. This causes the control perfor-
mance to degrade, which can be seen in the simulated
step response in Fig. 6. The execution of the threads in
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Fig. 6 Step response with interfering network messages and inter-
fering computer task.
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Fig. 7 Close-up of schedules showing the allocation of common
resources: network (top) and control computer (bottom).

the controller node and the transmission of messages
over the network can be studied in detail, see Fig. 7.

Different scheduling policies would have yielded dif-
ferent execution and transmission patterns, and hence
different control performance. This can easily be stud-
ied with TRUETIME, as well as different delay and jit-
ter compensation schemes.

5. SUB-TASK SCHEDULING

To minimize control delay, control algorithms are tra-
ditionally divided into two separate parts, calculate
output and update state. In the first part the measure-
ment is read, the control signal is computed and sent
to the process. In the other part the internal state of the
controller is updated. A scheme to improve schedul-
ing of multiple control tasks by scheduling the calcu-
late output and update state parts as separate tasks was
presented in (Cervin, 1999). In this scheme the cal-
culate output parts are given higher priorities than the
update state parts. A drawback with the method is an
increased number of context switches. This example
shows how TRUETIME can be used to evaluate the two
different scheduling policies and their affect on control
performance taking the effect of context switching into
account. The problem considered involves simultane-
ous control of three inverted pendulums on a single
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Fig. 8 The accumulated lossJ1 for the slow (low-priority) pen-
dulum using traditional and improved scheduling. The loss is
reduced considerably for the improved scheduling in spite of
an increased number of context switches.

CPU. Each pendulum is described by the continuous-
time equations (1).

Three discrete controllers with different sampling pe-
riods are designed based on the desired bandwidths 3,
5, and 7 rad/s, respectively, with corresponding sam-
pling periods of 167, 100, and 71 ms. The controllers
are based on state feedback with observers and imple-
mented on discrete state-space form, see e.g. (Åström
and Wittenmark, 1997). In the simulation of the im-
proved scheduling the controllers contain four code
segments. The first segment performs the calculate
output part. In the second segment the plant is actu-
ated followed by a call to the kernel to lower the pri-
ority for the update state part. The third segment up-
dates the state and the final segment resets the priority
for the calculate output part. The execution times for
segment one and three are 10 and 18 ms, respectively.
Segments two and four are modeled as having zero ex-
ecution time. The time for a full context switch is set
to 2 ms.

The two scheduling schemes are simulated for 100
seconds and the quadratic loss functions

Ji(t) =

Z t

0

�2i (s)ds i = 1; 2; 3 (3)

are recorded,�i being the angle of thei-th pendulum.

The accumulated lossJ1 for the slow (low-priority)
pendulum using traditional and improved scheduling
is shown in Fig. 8. The loss is reduced considerably
for the improved scheduling in spite of an increased
number of context switches. It can be seen in the
computer schedule in Fig. 9 that the control delay for
the low-priority thread is about the same as for the two
other threads, i.e. 10 ms.

6. CONCLUSIONS

This paper presented TRUETIME, an event-based sim-
ulator for control and real-time systems co-design.
The simulations capture the true, timely behavior of
real-time controller tasks, and dynamic control and
scheduling strategies can be evaluated from a control
performance perspective.
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Fig. 9 The computer schedule when using the improved schedul-
ing scheme. The control delay for the low-priority thread is
about the same as for the other threads. The kernel graph shows
the time to perform the context switches.
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