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Chapter 1

Introduction

In this report we present a description of the TUeES030 printed circuit board (PCB), shown on the
front page of this report. It was developed by Neways Electronics International N.V. and (with the
software described in this report) can be used to control up to three brushed DC motors. Apart from
controlling the motors, the board contains six analog input and two analog output channels, digital
input and output ports and eBus connectors for communication.

The target audience for this report is anyone who intends to use the board and who wants to know more
about its inner workings. It is assumed that the reader has (at least some) knowledge of electronics,
mechanics, programming and has access to a TUeES030 board and all the software.

In Figure 1.1 the hierarchy of the different parts of the TUeES030 is schematically represented. It starts
with the user that uses Simulink to communicate with, which then communicates with the software on
the micro-processor, this in turn communicates with the FPGA layer that finally controls the actual
electronic hardware. The report starts at the lowest level with a hardware description in Chapter 2
and moves up through the FPGA and Micro-Processor layers in Chapters 3 and 4, respectively. The
last layer is the Simulink software described in Chapter 5, after which some experimental results are
discussed in Chapter 6.

Figure 1.1: Workflow of the TUeES030 software
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Chapter 2

System Description

In Appendix A a block diagram of the TUeES030 board is shown, where the main electronic compo-
nents are displayed but the smaller details are left out to conserve clarity. In the rest of this chapter
these components will be discussed in more detail. For more information please contact Ruud van den
Bogaert.

2.1 Power Supply

The board is powered using a 24V power source, connected via a PTR AK500 connector. This 24V
power is filtered and converted to 12V via a low-dropout regulator (LDO), which is used to power
the H-bridges. The filtered 24V signal is also converted to 5V using a DC/DC converter rated at
0.5A, which is subsequently converted to 2.5V, 1.2V and 3.3V of which the first two are used to
power the FPGA and the last is used to power the external sensors and as a reference voltage for the
analog-to-digital converters (ADCs).

There is no overvoltage protection implemented on the board itself. This needs to be taken
into account when controlling motors, since back EMF caused by braking can damage the electronics.
With the use of batteries as a source this is less of a problem, because they have the ability to sink
the excess energy from braking. With most power supplies this is not the case. There are plans for
improvement, placing zener diodes to improve robustness, making them safe to use on both net and
battery power.

2.2 Encoder inputs

There are three differential incremental decoders placed on the board which are used to read the
encoder signals coming from the motors.

2.3 H-bridges

H-bridges are used to power the three motors, so three H-bridges are present on the board. They are
built using two DRV8412DDW dual full-bridge PWM motor drivers by Texas Instruments, of which
one is operated in parallel mode to supply motor M1 with 6A continuous current and the other in
dual mode to deliver 3A continuous current to motors M2 en M3. It is possible to drive M2 and M3
in parallel mode using jumpers, so two motors can be driven at 6A.
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2.4 Analog Outputs

The board has two analog outputs, which are produced by an AD5722R dual 12-bit, serial input,
voltage output, digital-to-analog converter (DAC) by Analog Devices. Currently they are not used in
the SERGIO arm, but they are used in the base and torso to drive motors via Elmo Violins, since the
TUeES030 board itself cannot supply enough current for these motors.

2.5 Analog Inputs

There are two 8-channel, 12-bits ADCs present on the board, namely the AS1543 by Austria Micro
Systems. They accept analog input voltages in the range of 0-3.3V. One of them is used for the three
absolute encoder signals (Hall sensors), three force sensors and two spare analog inputs, whereas the
other one is used for the three current measurement signals and verification of the 5V reference and
24V supply voltage.

2.6 Digital Inputs/Outputs

The seven digital in- and outputs can be used for a wide range of applications, but currently only two
digital outputs are used in the torso to control the callipers via a conversion to the RS-232 standard.

2.7 eBus connector

The communication with the EtherCAT master is realised using an ET1200 EtherCAT chip, that
allows communication via eBus connectors. There are two eBus connectors, one for connection to the
previous slave/master and the other for connection to the following slave. The chip runs on a 25 MHz
clock coming from the FPGA.

2.8 Clock

On board there is a 50 MHz crystal oscillator, that is divided in the FPGA to handle the timing of
the different components.

2.9 SPI Flash & LEDs

In order to reconfigure the FPGA at startup, its pin configuration can be stored on a flash memory
chip that is connected via a serial peripheral interface (SPI) to the FPGA.

The LEDs can be used to indicate operating modes and other messages.

2.10 Current Measurement

The board is able to measure the currents that are applied to the motors, which are necessary in order
to implement current control loops. In Figure 2.1 the part of the electric schematic that contains the
current control measurement for motor M1 is shown. These currents are measured with a voltage over
a resistor in series with the motor and amplified with a high speed precision current sense amplifier
(LT1999), designed to monitor bidirectional currents over a wide common mode range. his amplifies
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the differential voltage by a factor 20, after which the PWM switching frequency and noise are filtered
by an RC-filter. The resistance of 120Ω and capacitance of 10nF result in a low pass filter with a cut
off frequency of about 133 kHz.

Figure 2.1: Current measurement schematic

Since the analog input to which the voltage from the LT1999 is connected has a maximum voltage of
3.3V, the maximum current that can be measured is only I = VLT1999

20·R = 3.3
20·42·10−3 ≈ 4A. This is pretty

low, considering that the largest motor in the arm has a stall current of around 39 A and for motors
M2 and M3 this is only 2A (see the full schematic), so the choice is made to change the current sensing
resistors to 10mΩ, resulting in maximum current measurements of 33A for motor M1 and 16.5A for
motors M2 and M3.

The RC-filter is also adapted, because the PWM frequency is put at 80kHz and we want to filter the
switching frequency out of the signal. The new filter has an adapted resistance of 1kHz, resulting in
a cut-off frequency of around 16kHz.

Since some of the components were changed, it is crucial to verify which hardware is
implemented in the current measurement when using the boards. The changes made are
tracked in this document:
https://docs.google.com/spreadsheets/d/1uwgKZpDQyB88insf7BYhXKnPYnASr0eK2cZU_hEENB4/pubhtml

2.11 FPGA

The most important component on the board is the Field Programmable Gate Array (FPGA), which
controls and manages all signals on the boad. It is discussed extensively in the next chapter.
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Chapter 3

Field Programmable Gate Array

An FPGA is a reconfigurable integrated circuit consisting of (amongst others) programmable logic
blocks, configurable interconnects that allow these blocks to be connected, input/output blocks (I/O
blocks) and a configuration block1. Programmable logic blocks, or configurable logic blocks (CLBs)
as they are also known, contain logic gates, flip-flops, lookup tables and other digital logic. A typical
FPGA chip contains tens or hundred of thousands of these CLBs if not more. Input/output blocks
or pins connect the chip to other devices and contain some logic themselves. The interconnects, as
the name suggests, connect CLBs with each other and with I/O blocks and are configurable as well.
The configuration block loads the information on how the CLBs, I/O blocks and interconnects are
configured from an external flash memory where the configuration information is stored. A very
simplified, schematic representation of an FPGA is shown in Figure 3.1, where the yellow, blue and
white blocks represent I/O, configuration and CLB blocks, respectively. The red lines represent the
interconnects.

Figure 3.1: Conceptual representation of an FPGA

The advantages of an FPGA that we will make most use of are their speed (they are extremely fast)
and their parallel nature. By parallel nature we mean the fact that several operations can be executed
truly parallel, in contrast to micro-processors (MPs) which only perform operations sequentially.

1Most of the information in this introduction was derived from this YouTube video: https://www.youtube.com/

watch?v=gUsHwi4M4xE by EEVblog
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Figure 3.2: Xilinx Spartan®-6

The FPGA chip used in the TUeES030 board is the Spartan®-6 by Xilinx as displayed in Figure 3.2
and it is programmed using Altium Designer 14.3 (or higher). In the rest of this chapter the steps and
files needed to program the FGPA will be presented. Note that the introduction above is only a very,
very short introduction into FPGAs, for further reading the book ‘FPGA for Dummies’ by Andrew
Moore is suggested. For more information on the code and the FPGA itself, please contact Ruud van
den Bogaert.

3.1 Constraint File

Programming the FPGA chip starts with the constraint file, where the mapping from the device
independent HDL circuit nets to the physical in- and output pins of the FPGA chip is defined. This
means that Verilog is a device independent language, so only the constraint file needs to be changed
if ports or the device itself is changed! It is crucial that this is done correctly, since they represent
actual connection pins on the FPGA and if done incorrectly, the FPGA could be damaged.

In Figure 3.3 part of the constraint file Neways Spartan6.Constraint for the TUeES030 boards is
shown. Here, the third encoder and the first PWM H-bridge pins are being defined. All ports follow a
similar structure, they have the Record type Constraint, the TargetKind of Port, a Target Id which
can be chosen by the user (we advise to keep this the same as in the electronic schematics, making
it a lot easier to track pins) and an FPGA pin number FPGA PINNUM that represents the physical pin
of the FPGA to which the target port is connected. In other words, one line of code from Figure 3.3
says that a port in the Altium schematic be connected to the corresponding FPGA pin number, for
instance that port M1 PWM A should be connected to pin R1.

Figure 3.3: Part of the Constraint File for the TUeES030 board
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3.2 OpenBus System Document

The next step is to create an OpenBus System Document, where the connections between the different
peripherals and the micro-processor are defined. Note that the peripherals and micro-processor are not
physical devices connected to the FPGA, instead they are parts of the FPGA that are configured to
work as a MP or as a peripheral, so they can be chosen by the user to provide an insightful subdivision.
This part of the FPGA program uses the wishbone standard for communication.

Figure 3.4: OpenBus System Document for the TUeES030 FPGA

In Figure 3.4 the OpenBus System Document for the TUeES030 boards is shown. Here we can see a
micro-processor at the top (see Chapter 4), twelve peripherals and one interconnect device in the center,
all of which can be found in the OpenBus palette. The peripherals are, in clockwise order starting to the
right of the MP, two analog-to-digital converters (ADCs), one digital-to-analog converter (DAC), PWM
creation, EtherCAT timer, three encoders, universal asynchronous receiver/transmitter (UART), two
serial peripheral interfaces (SPIs) and general purpose input/output (GPIO).

The peripherals with the green blocks in them are custom wishbone interfaces and will be discussed
in Section 3.4. The others are already programmed and available from the OpenBus palette and
only need to be configured. We will not discuss the configurations in detail, but only mention their
purpose. The GPIO is used for the eight digital in- and outputs, the EC 1 SPI port is used for
communication over EtherCAT, the other SPI port is connected to the flash memory for storing the
FPGA configuration and the UART peripheral is used for controlling the callipers.
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3.3 Schematic

Now that we connected the MP with all the peripherals in the OpenBus System Document, all the
internal connections are defined. What remains is the connection with the external pins and the
completion of the custom wishbone interfaces. This is done using the top-level schematic, which can
be added to the Altium FPGA Project by right clicking on the project and choosing Add New to

Project -> Schematic. The result is an empty schematic, where the ports defined in the Constraint
File and the connections with the OpenBus System Document need to be placed. Adding the ports
is done by right clicking on the schematic and choosing Place -> Port, after which the port can be
configured by double clicking on it and selecting the correct variable from the drop down menu Name.
The connections with the OpenBus are most easily made by adding a sheet symbol (Place -> Sheet

Symbol), configuring it with the OpenBus System Document (double click and select the OpenBus
document as Filename) and letting Altium synchronise the ports (right click on the Sheet Symbol
and select Sheet Symbol Actions -> Synchronise Sheet Entries and Ports). The ports can be
connected using wires and busses, where wires are used for ports with single variables and busses are
used for ports with arrays of variables.

The custom wishbone interfaces can be created by placing a Sheet Symbol on the schematic and choos-
ing in the right click menu Sheet Symbol Actions -> Create Verilog File From Sheet Symbol.
In this Verilog File the interfaces can be programmed, which will be discussed in Section 3.4.

Figure 3.5: Top-level schematic of the TUeES030 FPGA code

In Figure 3.5 the top-level for the TUeES030 FPGA code is shown, where the main block in the center
is the Sheet Symbol coupled to the OpenBus System Document and the custom wishbone interfaces
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are the blocks to the sides. The other peripherals are represented by ports on the main block. The
pink blocks in the top left corner are two Clock Managers and an FPGA Startup block. The clock
managers are used to create clocks with different frequencies than the physical on-board clock and
the FPGA STARTUPS is used to delay the program in the beginning, so that there is some time for
initialisation.

3.4 Verilog Code

As mentioned, the code for the custom wishbone interfaces is programmed using Verilog. Verilog is
a hardware description language (HDL) that has very similar syntax to C. The name HDL is logical,
since we are actually programming how the hardware should be configured, so we are describing the
hardware. The crucial difference between C an Verilog is that it has the ability to execute code in
parallel due to the fact that we are programming hardware, in contrary to C, where commands are
executed sequentially.2

3.4.1 Basics

We will now discuss some of the Verilog basics using the simplest Verilog code that is used in the
TUeES030 board: ECATtimer.V, as shown in Listing 3.1 in Section 3.4.2. All Verilog codes start the
same, with the declaration of the module name and its input and outputs as in lines 1-8. The [15:0]

denotes that the 0th through to the 15th bit of the TOP and CMP signals are inputs, which in this
case are the complete signals since they are both 16-bits variables. output reg means that IRQ is a
register, which is the same as a variable, and is an output. The reason that we need to declare the
type of the output and not of the inputs is because the inputs are already defined externally whereas
the output is first computed in this function.

1 module ECATtimer(CLK, ENA, SYNC, SYNCENA, TOP, CMP, IRQ) ;
2
3 input CLK;
4 input ENA;
5 input SYNC;
6 input SYNCENA;
7 input [ 1 5 : 0 ] TOP, CMP;
8 output reg IRQ;
9

10 reg IRQa ;
11 reg IRQb ;
12 reg synca , syncb ;
13 reg [ 1 5 : 0 ] countera ;
14
15 wire c l e a r ;
16 a s s i gn c l e a r = ∼ENA;
17
18 wire cntatop ;
19 a s s i gn cntatop = ( countera == TOP) ;
20
21 wire syncpu l se ;
22 a s s i gn syncpu l se = ( synca & ∼syncb ) ;
23
24 always @ ( posedge CLK)
25 begin
26 i f ( c l e a r ) begin
27 countera <= 0 ;
28 synca <= 0 ; syncb <= 0 ;
29 IRQ <= 0 ;
30 IRQa <= 0 ;

2https://nl.wikipedia.org/wiki/Verilog
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31 IRQb <= 0 ;
32 end
33 e l s e begin
34 synca <= SYNC & SYNCENA;
35 syncb <= synca ;
36 i f ( cntatop | syncpu l se ) begin
37 countera <= 0 ;
38 end
39 e l s e begin
40 countera <= countera + 1 ’ b1 ;
41 end
42 i f ( countera == CMP) begin
43 IRQ <= 1 ;
44 IRQa <= 1 ;
45 end
46 IRQb <= IRQa ;
47 i f (IRQ & IRQb) begin
48 IRQ <= 0 ;
49 end
50 end
51 end
52
53 endmodule

Listing 3.1: ECATtimer.V

Next, the internal variables are declared as registers, where countera has 16-bits. Following these
registers are some more internal ‘variables’ known as wires. These are not really variables, but more
actual wires, meaning that they change instantaneously if one of the variables they depend on changes.
For instance the wire clear is assigned the value of not ENA (short for enable), so if at any moment
ENA changes, clear changes immediately to the opposite of ENA. Similarly cnatop turns to a logical
true if the value of countera equals that of TOP and syncpulse is true when both synca and not
syncb are true.

Following this the main loop of the program starts with always @ (posedge CLK), meaning that the
code between the begin and its associated end is ran every time the input variable CLK (clock) has
a positive edge. In Verilog this is known as a sequential block, which are all the blocks that start
with begin and end with end. As the name suggests, inside these sequential blocks the code runs
sequentially and not in parallel. The if else statements are similar to their C equivalent. A final
comment on Verilog programming before we explain the workings of this piece of code is that the
operator <= is not the comparator ‘less than or equal to’ which we are used to from C. In Verilog
the operator <= is known as a non-blocking assignment, because contrary to the blocking assignment,
denoted by the operator =, it does not block the program from executing.

1 module t o p l e v e l ( c lock , r e s e t ) ;
2 input c l o ck ;
3 input r e s e t ;
4
5 reg f l op1 ;
6 reg f l op2 ;
7
8 always @ ( posedge r e s e t or posedge c l o ck )
9 i f ( r e s e t )

10 begin
11 f l op1 <= 0 ;
12 f l op2 <= 1 ;
13 end
14 e l s e
15 begin
16 f l op1 <= f l op2 ;
17 f l op2 <= f l op1 ;
18 end
19 endmodule
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Listing 3.2: Blocking vs non-blocking example, source: https://nl.wikipedia.org/wiki/Verilog

Blocking the program means that the next line of code cannot be executed as long as the current
line with the blocking operator = is not executed, thus preventing, or blocking, the program from
continuing. The non-blocking operator prevents this by only updating all the variables at the beginning
of the next clock cycle, all at exactly the same time. The difference between the two assignment
methods is best shown in an example as in Listing 3.2. In this code, the registers flop1 and flop2 are
defined as 0 and 1 when the reset is given, after which they switch values each time the clock signal
has a positive edge. If we would change the last two non-blocking assignments to blocking assignments,
the code would have a completely different result, namely that flop1 would be immediately set to the
value of flop2, after which flop2 would be given the value of flop1, thus they both end up being
the same value. With the non-blocking assignment the right hand side of the operators is checked and
at the next cycle the left hand side registers are updated simultaneously, thus resulting in the values
switching.3

Now that the basics of Verilog are clear, the workings of the five different Verilog codes used are
explained.

3.4.2 ECATtimer.V

As could be seen in the schematic of Figure 3.5, the input SYNC comes from the physical port
ECAT SYNC0, which is a signal that can be used to sync with the etherCAT master, but for now it
just runs at 1 kHz. The input CLK is connected to the main clock of the FPGA program, running at
40 MHz. The rest of the inputs are all defined in the Openbus block and are thus coming from the
softcore.

The main loop clears all registers as long as clear is true, so as long as the block is not enabled.
If the block is enabled, synca goes to 1 if both SYNC and SYNCENA are true, so if syncing is enabled
and the clock gives a syncing signal. Since syncb is defined using a non-blocking constraint, it stays
at zero, only going to 1 one time step later. This means that syncpulse goes to 1, as soon as the
SYNC command is given and goes to zero the time step after, thus creating a syncing pulse, as shown
graphically in Figure 3.6.

3https://nl.wikipedia.org/wiki/Verilog
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Figure 3.6: Pulse creation

The following if else statement in lines 36-41 resets countera if either it equals the value defined
in top or the syncing command is given. If not being reset, the value increases with 1 every time
step, thus creating a saw tooth signal. The notation 1’b1 stands for a value that has a size of 1 bit,
is in binary format and has the value 1, similarly 16’h0000 is a value with a size of 16 bits, is in
hexadecimal format and has the value 0.

The final part of the code in lines 42-49 creates an instantaneous interrupt (IRQ) pulse as soon as
countera equals the comparator value CMP. Thus this Verilog file creates a synced interrupt signal
using a sawtooth and comparator. It is used to activate an interrupt that takes care of the encoder
calculations at a lower update rate of 1 kHz, as shown in Section 4.2.2.

3.4.3 PWM2ph3.V

The next Verilog code discussed is the one used to create the PWM signals for driving the H-bridges
of the motors. We will no longer discuss the code line by line, but just explain its function and leave
it to the reader to verify that this is indeed the result the code produces.

In order to create the PWM signals, the code uses a single counter that forms a triangle, where the
top of the triangle can be adjusted in order to adjust the frequency. For each motor there are two
comparators, one for phase A and the other for phase B, with their levels calculated in the higher level
software of the micro-processor, see Section 4.2.1.
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Figure 3.7: H-bridge with flyback diodes

In Figure 3.7 an H-bridge as used in the TUeES030 board is shown. The use of an H-bridge to drive
a brushed DC motor is very common practice and has the advantage of being able to drive a motor
using PWM signals as opposed to analog signals, which are often not available. Another advantage
is that the motor can be driven in both directions and can be powered from another source than the
(micro-)controller used to control the switches, which cannot supply sufficient power. In Table 3.1
the possible switch positions and their results are shown. From this we can conclude that S1 and S2
should always be in opposite position or both open, as should S3 and S4.

Closed Switches Result

S1, S4 Positive voltage across motor

S2, S3 Negative voltage across motor

S1, S3 Braking

S2, S4 Braking

S1, S2 Short

S3, S4 Short

Three or more Short

1 or none Tristate (the axis can rotate freely without inducing back-emf)

Table 3.1: Switching combinations for H-bridge

The PWM signals created in this Verilog code are referred to as phase A and phase B, where phase
A is the S1 control, so A-not (or Ā) is the control for S2 and phase B is the control for S3 and B̄ is
the control for S4. Also, phase A and B are both at 50% for no input, so if we want the motor to stay
still and they change equal and opposite from the center, so if we put phase A at 75%, it means that
phase B has to be at 25%. Examples showing the triangular counter waveform in red, the comparator
values with a black dashed line and the resulting PWM signals and end result on the motor for the
50% and 75% cases are shown in Figures 3.8 and 3.9, respectively.

The advantage of having the PWM signals at 50% for zero motor current is that it removes the
problem of having very small PWM peaks at very low power, which result in high frequency noise.
The advantage of using the triangular comparator signal together with PWM varying around the
center can be seen in the 75% case, where if we look at the result across the motor we can see that the
frequency the motor experiences is twice as large as the PWM frequency, so we doubled our PWM
frequency by a good choice of signal!
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Figure 3.8: PWM waveforms at 50%
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Figure 3.9: PWM waveforms at 75%

Lastly the code ensures that the top (for adjusting the PWM frequency) and comparator parameters
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are only adjusted when the counter is at the bottom, thus ensuring smooth transitions. Also, the ADC
is only allowed to be read when the counter has reached the top, resulting in perfect synchronisation.

3.4.4 AS1542 adc.V

The 16 analog inputs are read via two 8-channel multiplex ADCs, which work sequentially. The two
ADCs are read in parallel in the FPGA.

3.4.5 AD5722 dac.V

In this block the code for the two channel DAC is implemented.

3.4.6 quaddecoder.V

The quadrature signal coming from the encoder receivers (shown in Appendix A), are converted to
counts in this module. The signals originate from the encoders on the motor shafts, which supply two
output signals A and B and an index signal I. A and B are pulse signals that are 90 degrees phase
shifted from each other, which as known as being in quadrature. Because they are in quadrature, both
the position and direction of rotation can be determined from them. The index signal gives a pulse
ones every motor rotation, which can be used for absolute positioning. However, in most cases where
there is a transmission attached to the motor shaft, the index cannot be used for absolute positioning.

3.4.7 swap32.V

This module is used to swap from the host endianness to the ethercat endianness in the FPGA, thus
being faster than the micro-processor implementation explained in Section 4.5.1, where the swapping
process is also explained in more detail.
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Chapter 4

Micro Processor

In an FPGA, one or more microprocessors can be placed. Our FPGA project includes a 32-bit open-
source freeware soft-core processor by Tasking. The code will not be explained line by line, since there
are over a thousand of them. Instead, the most important are explained, for more information please
view the code itself, which has comments throughout. All the code is written in the programming
language C.

The board is programmed such that it has two operating modes: normal and frequency response
function (FRF) mode. In normal mode all the inputs and outputs are available, whereas in FRF mode
the inputs and outputs are limited to a single motor, in order to achieve enough data throughput to
be able to sample with 20 kHz. More on this mode can be found in Chapter 5.

4.1 Main Code

The main file of the micro-processor code is ecat actuator.c and it’s where most of the code is
located. As with all C-code, the program is defined in the main function, as displayed in Listing 4.1,
where several sub-functions are defined.

912 int32_t main(void)

913 {

914 swplatform_init_stacks ();

915 // Setup post config hooks

916 static esc_cfg_t config =

917 {

918 .pre_state_change_hook = NULL ,

919 .post_state_change_hook = post_state_change_hook

920 };

921 ESC_config (( esc_cfg_t *)&config);

922 RXPDOsize = SM2_sml = sizeRXPDO ();

923 TXPDOsize = SM3_sml = sizeTXPDO ();

924 foe_init ();

925 delay_ms (100);

926 waitforESCready ();

927 ESC_ALstatus(ESCinit);

928 ESC_ALerror(ALERR_NONE);

929 ESC_stopmbx ();

930 ESC_stopinput ();

931 ESC_stopoutput ();

932 init_param ();

933 init_actuators ();

934 init_sensors ();

935 reset_wd ();

936 init_interrupts ();

937
938 // cyclic application loop
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939 while (1)

940 {

941 ESC_read(ESCREG_LOCALTIME ,( uint8_t *)&ESCvar.Time ,sizeof(ESCvar.Time) ,(uint8_t *)&

ESCvar.ALevent);

942 ESCvar.Time=etohl(ESCvar.Time);

943 ESC_state ();

944 if(ESC_mbxprocess ())

945 {

946 ESC_coeprocess ();

947 ESC_foeprocess ();

948 }

949 handle_RXPDO ();

950 handle_TXPDO ();

951 }

952 }

Listing 4.1: int32 t main(void)

4.1.1 Initialisation

The main loop starts with the initialization of the Software Stacks, by running the function swplatform init stacks,
which initializes the wishbone devices. This is followed by several EtherCAT initialisation and config-
uration steps in lines 916-931, which we will not discuss.

Next in lines 932-936 are more initialisations, shown in Listing 4.2. In init param the parameters
(see Section 4.4.3) are first set to their default values (in SI units) in default param after which they
are converted to internal values in param2int. Then the actuator are initialised in init actuators,
where the digital outputs are set to zero in set digout, the digital to analog converts are initialised in
init DAC and the PWM signals are started in init PWM. In init sensors the encoders are switched
on and in reset wd the watchdog is reset. Finally, the interrupts are initialised in init interrupts,
more on this in Section 4.2.

static void init_param(void)

{

default_param ();

param2int ();

}

static void init_actuators(void)

{

set_digout (0);

init_DAC ();

init_PWM ();

}

static void init_sensors(void)

{

ENC1_ENA = 0;

ENC2_ENA = 0;

ENC3_ENA = 0;

ENC1_ENA = 1;

ENC2_ENA = 1;

ENC3_ENA = 1;

}

static inline void reset_wd(void)

{

wd_cnt = wd_resetvalue;

wd_trigger = 0;

}

22



void init_interrupts(void)

{

// configure PWM/ADC interrupt

interrupt_register_native( INTPWM , (void*)NULL , i_handler_pwm );

interrupt_configure( INTPWM , EDGE_RISING );

interrupt_acknowledge(INTPWM);

interrupt_enable(INTPWM);

// configure service timer and interrupt

TIM_TOP = SERVICEPER - 1;

TIM_ENA = 1;

interrupt_register_native(INTEC , (void*)NULL , i_handler_ec );

interrupt_configure(INTEC , EDGE_RISING );

interrupt_acknowledge(INTEC);

interrupt_enable(INTEC);

interrupts_enable ();

}

Listing 4.2: Initialisations

4.1.2 Update

Following the initialisation is a while loop in lines 939-951 of Listing 4.1, where the majority of the
functions are called. It starts with several EtherCAT communication steps, which take care of writing
and reading data to and from the master, these will not be discussed in further detail.

After the communication there are two functions that handle receiving and transmitting of process
data: handle RXPDO and handle TXPDO. The function names stand for receive and transmit PDO
(process data object) mapping, respectively.

535 static void handle_RXPDO(void)

536 {

537 int count , i;

538 uint8_t tmpu8;

539 if(App.state & APPSTATE_OUTPUT)

540 {

541 if(ESCvar.ALevent & ESCREG_ALEVENT_SM2)

542 {

543 if(operationmode == OPERATION_STD)

544 {

545 ESC_read(SM2_sma ,( uint8_t *)&rxpdo1 ,RXPDOsize ,( uint8_t *)&ESCvar.ALevent);

546 update_actuators ();

547 }

548 // operation mode FRF

549 else

550 {

551 ESC_read(SM2_sma , (uint8_t *)&rxpdo2 ,RXPDOsize ,( uint8_t *)&ESCvar.ALevent);

552 // use intermediate varable to prevent race condition with i_handler_pwm

553 // mcom : bit 0..1 = motor channel , bit 2 = enable , bit 3 = tristate active

554 tmpu8 = rxpdo2.mcom & MCOM_FRF_MMASK;

555 if(tmpu8 > 2) tmpu8 = 2;

556 frfchannel = tmpu8;

557 if(frfchannel != 0) motor [0]. enabled = 0;

558 if(frfchannel != 1) motor [1]. enabled = 0;

559 if(frfchannel != 2) motor [2]. enabled = 0;

560 if(rxpdo2.mcom & MCOM_FRF_ENABLE)

561 motor[frfchannel ]. enabled = MCOM_ENABLE;

562 else

563 motor[frfchannel ]. enabled = 0;

564 if(rxpdo2.mcom & MCOM_FRF_TRISTATE)

565 motor[frfchannel ]. tristate = MCOM_TRISTATE;

566 else
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567 motor[frfchannel ]. tristate = 0;

568 count = rxpdo2.entries;

569 if(count > FRFBUFFERSIZE) count = FRFBUFFERSIZE;

570 for(i=0; i < count ; i++)

571 {

572 if(rxfree ())

573 rx_buffer_write(htoes2(rxpdo2.setpoint[i]));

574 }

575 txbufferentries = 0;

576 txpdo2.entries = 0;

577 }

578 reset_wd ();

579 }

580 // watchdog time has elapsed?

581 if(! wd_cnt)

582 {

583 ESC_stopoutput ();

584 // watchdog , invalid outputs

585 ESC_ALerror(ALERR_WATCHDOG);

586 // goto safe -op with error bit set

587 ESC_ALstatus(ESCsafeop | ESCerror);

588 wd_trigger = 1;

589 }

590 }

591 else

592 {

593 reset_wd ();

594 }

595 }

Listing 4.3: handle RXPDO

The receiving part is displayed in Listing 4.3, where it becomes clear that there are two operating
modes, normal and FRF (frequency response function) mode. More on these two modes in Chapter 5.
In normal mode the settings are read from the EtherCAT master and subsequently the actuators are
updated in update actuators, as shown in Listing 4.4. Here the current setpoint, feedforward signal,
enabled and tristate setting are updated for each of the three motors. Also, the feedforward signal is
clipped between the maximum negative and positive voltages.

501 static inline void update_actuators(void)

502 {

503 motor [0]. current_setpoint = htoes2(rxpdo1.setpoint1);

504 motor [0]. setpoint_ff = clip16(htoes2(rxpdo1.ff1), -MAXVOLTAGE , MAXVOLTAGE);

505 motor [0]. enabled = rxpdo1.mcom1 & MCOM_ENABLE;

506 motor [0]. tristate = rxpdo1.mcom1 & MCOM_TRISTATE;

507 motor [1]. current_setpoint = htoes2(rxpdo1.setpoint2);

508 motor [1]. setpoint_ff = clip16(htoes2(rxpdo1.ff2), -MAXVOLTAGE , MAXVOLTAGE);

509 motor [1]. enabled = rxpdo1.mcom2 & MCOM_ENABLE;

510 motor [1]. tristate = rxpdo1.mcom2 & MCOM_TRISTATE;

511 motor [2]. current_setpoint = htoes2(rxpdo1.setpoint3);

512 motor [2]. setpoint_ff = clip16(htoes2(rxpdo1.ff3), -MAXVOLTAGE , MAXVOLTAGE);

513 motor [2]. enabled = rxpdo1.mcom3 & MCOM_ENABLE;

514 motor [2]. tristate = rxpdo1.mcom3 & MCOM_TRISTATE;

515 cpy_digout (( rxpdo1.digital & 0x0f) | (dostate & 0xf0));

516 update_DAC ();

517 }

Listing 4.4: update actuators

In the FRF mode again the settings are read from the EtherCAT master and updated, but instead
of having a single setpoint value that is updated, there are up to 22 setpoints that are put into a
receiving buffer using rx buffer write. More on this buffer in Subsection 4.3.
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597 static void handle_TXPDO(void)

598 {

599 int16_t temp;

600 uint8_t di;

601 if(App.state & APPSTATE_INPUT){

602 if(operationmode == OPERATION_STD)

603 {

604 read_encoders ();

605 read_calipers ();

606 read_ADC ();

607 di = read_digin ();

608 // bit 0 : enabled

609 // bit 1 : DRV fault

610 // bit 2 : DRV over temp warning

611 txpdo1.mstate1 = (uint8_t)motor [0]. enabled | ((di & (M1_FAULT | M1_OTW)) >> 3);

612 // motor 2 and 3 have common driver and therefore common faults

613 txpdo1.mstate2 = (uint8_t)motor [1]. enabled | ((di & (M2_M3_FAULT | M2_M3_OTW))

>> 5);

614 txpdo1.mstate3 = (uint8_t)motor [2]. enabled | ((di & (M2_M3_FAULT | M2_M3_OTW))

>> 5);

615 txpdo1.linevoltage = htoes2(linevoltage_i);

616 txpdo1.digital = di & DIGINMASK;

617 ESC_write(SM3_sma ,( uint8_t *)&txpdo1 ,TXPDOsize ,( uint8_t *)&ESCvar.ALevent);

618 } else if(! txbufferentries)

619 {

620 while(tx_counter && (txbufferentries < FRFBUFFERSIZE))

621 {

622 temp = tx_buffer_read ();

623 txpdo2.current[txbufferentries] = htoes2(temp);

624 txpdo2.entries = (uint8_t)txbufferentries;

625 txbufferentries ++;

626 }

627 di = read_digin ();

628 txpdo2.mstate = (uint8_t)(motor [0]. enabled | motor [1]. enabled | motor [2].

enabled) |

629 ((di & (M1_FAULT | M1_OTW)) >> 3) |

630 ((di & (M2_M3_FAULT | M2_M3_OTW)) >> 5);

631 txpdo2.buffer = (uint8_t)rx_counter;

632 ESC_write(SM3_sma ,( uint8_t *)&txpdo2 ,TXPDOsize ,( uint8_t *)&ESCvar.ALevent);

633 }

634 }

635 }

Listing 4.5: handle TXPDO

The transmitting of the PDO mapping as displayed in Listing 4.5 works in much the same way as the
receiving part, as it also has a normal and FRF operating mode. In the normal mode the encoders,
callipers, ADCs, DIs, motor states and line voltages are read and updated. In the FRF mode most of
these values are not read, but instead only the motor state together with up to 22 current measurement
values in the transmit buffer are sent over to the master.

4.2 Interrupts

Apart from the main application loop, there are also two so called interrupts defined in ecat actuator.c.
Interrupt functions are pieces of code that interrupt the normal sequential flow of the C-code to be
ran immediately. They are used for code that has a very high timing priority, so code that needs to
be executed immediately.
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4.2.1 PWM handler

The first interrupt i handler pwm is shown in Listing 4.6 and handles the calculation of the PWM
signals, running at a frequency of 20 kHz. It starts by subtracting the common mode voltage from the
current measurement and subsequently converting the current from internal to 1 mA units. Then, if
the FRF mode is active, current setpoints are retrieved from the receive buffer or set to zero if there
are none (in normal mode the current setpoints are read from the master in update actuators).

658 __INTERRUPT_NATIVE void i_handler_pwm(void)

659 {

660 int16_t adc_current1 , adc_current2 , adc_current3;

661 adc_current1 = ADC2_CH3 - zero_current1;

662 adc_current2 = ADC2_CH4 - zero_current2;

663 adc_current3 = ADC2_CH5 - zero_current3;

664 // convert ADC current units to 1mA units

665 motor [0]. current = q8mul(adc_current1 , (int16_t)(R2IGAINCH1 * Q8f));

666 motor [1]. current = q8mul(adc_current2 , (int16_t)(R2IGAIN * Q8f));

667 motor [2]. current = q8mul(adc_current3 , (int16_t)(R2IGAIN * Q8f));

668 if(operationmode == OPERATION_FRF)

669 {

670 if(rx_counter)

671 {

672 motor[frfchannel ]. current_setpoint = rx_buffer_read ();

673 tx_buffer_write(motor[frfchannel ]. current);

674 }

675 else

676 {

677 motor[frfchannel ]. current_setpoint = 0;

678 }

679 }

680 // compute PI controller based on current setpoint , actual measured current and

feed forward

681 currentPI (& motor [0]);

682 currentPI (& motor [1]);

683 currentPI (& motor [2]);

684 if(ADC2_CH2 > KILLVOLTAGE)

685 {

686 motor [0]. enabled = motor [1]. enabled = motor [2]. enabled = 0;

687 }

688 // if not in operational state brake or tristate motors

689 if(! motor [0]. enabled)

690 {

691 motor [0]. cc_integral = 0;

692 motor [0]. cc_pwm = 0;

693 if(motor [0]. tristate) clear_drvena(DRVENA1);

694 } else set_drvena(DRVENA1);

695 if(! motor [1]. enabled)

696 {

697 motor [1]. cc_integral = 0;

698 motor [1]. cc_pwm = 0;

699 if(motor [1]. tristate) clear_drvena(DRVENA2);

700 } else set_drvena(DRVENA2);

701 if(! motor [2]. enabled)

702 {

703 motor [2]. cc_integral = 0;

704 motor [2]. cc_pwm = 0;

705 if(motor [2]. tristate) clear_drvena(DRVENA3);

706 } else set_drvena(DRVENA3);

707 if(App.state & APPSTATE_OUTPUT)

708 {

709 update_PWM ();

710 }

711 else

712 {

713 clear_PWM ();
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714 }

715 interrupt_acknowledge(INTPWM);

716 }

Listing 4.6: i handler pwm

After the current setpoints are retrieved the control efforts are calculated using the currentPI function,
shown in Listing 4.7. It is the implementation of a proportional-integral (PI) controller with integrator
anti-windup together with back-EMF and motor resistance feedforward. First the error is determined
as the difference between the setpoint and the measured current, then the integral of the error is
calculated as a summation of the error and the previous integral value, after which the value is clipped
if the integral exceeds the limit that is set by ilimit (anti-windup). Subsequently the control effort
is calculated as the error times the proportional gain plus the integral of the error times the integral
gain. The PWM signal is then set as the control effort plus the feedforward signal.

637 static void currentPI(motor_t *motor)

638 {

639 // current control error

640 motor ->cc_error = motor ->current_setpoint - motor ->current;

641 // integrator , wind up limited if PWM saturates

642 if(!motor ->cc_isclipped)

643 {

644 motor ->cc_integral = clip32(motor ->cc_integral + motor ->cc_error , -motor ->

cc_ilimit , motor ->cc_ilimit);

645 }

646 // PI controller : control = ((PGAIN * i_err) + (IGAIN * i_i))

647 // clipped at maxvoltage

648 motor ->cc_control = (int16_t)clip32(q8mul32(motor ->cc_error , motor ->cc_pgain)

649 + q8mul32 ((motor ->cc_integral >> 6), motor ->

cc_igain)

650 , -MAXVOLTAGE , MAXVOLTAGE);

651 // transform to pwm duty cycle clipped at MAXCONTROL

652 motor ->cc_pwm = (int16_t)clip16(q8mul(motor ->cc_control +

653 motor ->backemf_ff +

654 motor ->setpoint_ff +

655 q8mul(motor ->current_setpoint , motor ->rm2u)

656 , u2pwm), -MAXCONTROL , MAXCONTROL);

657 // clip16 isclipped result is copied in motor struct to prevent integral wind -up

658 motor ->cc_isclipped = isclipped;

659 }

Listing 4.7: currentPI

The last part of the interrupt brakes the motors if the line voltage exceeds the kill voltage value and
if the motors are not in enabled mode. The motors are put in tristate if the user enables this.

4.2.2 Encoder Handler

The second interrupt, i handler ec, runs at a lower frequency of 1 kHz and is shown in Listing 4.8.
First the encoder positions and associated timestamps are stored, after which the motor velocities are
calculated in the encoder calculations function, shown in Listing 4.9. Also the voltage to PWM
conversion is calculated depending on the linevoltage, with the calculation using a minimal value of
10V, since otherwise the PWM pulses will become very long. The reason that this interrupt runs at a
lower frequency is that calculating the mechanical quantities at a faster rate is not very useful, since
the mechanical time constant of the system is much slower than the electrical one. This also saves
calculation time.

740 __INTERRUPT_NATIVE void i_handler_ec(void)

741 {
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742 static int ledcnt;

743 icnt ++;

744 txpdo1.ectime = htoes(icnt);

745 ENC1_HOLD = 1;

746 motor [0]. position = ENC1_COUNT;

747 motor [0]. poscaptime = ENC1_TIMESTAMP;

748 ENC1_HOLD = 0;

749 ENC2_HOLD = 1;

750 motor [1]. position = ENC2_COUNT;

751 motor [1]. poscaptime = ENC2_TIMESTAMP;

752 ENC2_HOLD = 0;

753 ENC3_HOLD = 1;

754 motor [2]. position = ENC3_COUNT;

755 motor [2]. poscaptime = ENC3_TIMESTAMP;

756 ENC3_HOLD = 0;

757
758 if(wd_cnt) wd_cnt --;

759 encoder_calculations (&motor [0]);

760 encoder_calculations (&motor [1]);

761 encoder_calculations (&motor [2]);

762 // compute feed forward for back emf

763 // voltage = motor_velocity * motor_KV

764 motor [0]. backemf_ff = q8mul(motor [0]. velocity , motor [0]. kvmotor);

765 motor [1]. backemf_ff = q8mul(motor [1]. velocity , motor [1]. kvmotor);

766 motor [2]. backemf_ff = q8mul(motor [2]. velocity , motor [2]. kvmotor);

767 // internal line voltage as integer value in 10mV units

768 linevoltage_i = q8mul(ADC2_CH2 , R2U_FP);

769 // only caluculate when linevoltage > 10V

770 if(linevoltage_i > LINEVOLTAGELIMIT)

771 {

772 // u2pwm in q8, u control in 10mV units

773 u2pwm = (Q8f * PWMPER) / linevoltage_i;

774 }

775 else

776 {

777 u2pwm = (Q8f * PWMPER) / LINEVOLTAGELIMIT;

778 }

779 if(ledcnt ++ & 0x100) toggle_digout(FRUN);

780 interrupt_acknowledge(INTEC);

781 }

Listing 4.8: i handler ec

637 static inline void encoder_calculations(motor_t *motor)

638 {

639 int32_t delta_pos , delta_time;

640 int32_t velo , part;

641
642 delta_pos = (motor ->position - motor ->prev_position) * motor ->encoder_dir;

643 delta_time = motor ->poscaptime - motor ->prev_poscaptime;

644 if(delta_time > VELTIMELIMIT)

645 {

646 // velocity calcultation in two parts to keep temporary values in 32bit

647 // !! changing to 64bits or float will engage lib functions that disable

interrupts

648 // !! thus leading to large jitter in i_handler_pwm

649 part = (int32_t)(CPU_CLK * 2.0f * PI_FLOAT) / motor ->encoderincrements;

650 velo = (delta_pos * part * 10) / delta_time;

651 } else velo = 0;

652 // velocity in 0.1 rad*s-1 units

653 motor ->velocity = (int32_t)velo;

654 motor ->prev_position = motor ->position;

655 motor ->prev_poscaptime = motor ->poscaptime;

656 }
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Listing 4.9: encoder calculations

4.3 Circular Buffer

The firmware can operate in two modes, a normal and an FRF mode. In the latter, setpoints and
current measurements need to be buffered to enable a high enough throughput to the master, more
on this mode in Section 4.3. These buffers, rx buffer for the setpoints and tx buffer for the current
measurements, are implemented as ring buffers in circbuffer.c, shown in Listing 4.10.

#include <stdint.h>

#include <swplatform.h>

#include "boardconst.h"

#define TX_BUFFER_SIZE 100

#define RX_BUFFER_SIZE 100

int16_t rx_buffer[RX_BUFFER_SIZE ];

int rx_wr_index , rx_rd_index;

volatile int rx_counter;

int rx_buffer_overflow;

int16_t tx_buffer[TX_BUFFER_SIZE ];

int tx_wr_index , tx_rd_index;

volatile int tx_counter;

// rx_buffer is ring buffer EtherCAT to PWM interrupt

void rx_buffer_write(int16_t value)

{

int tmpi;

rx_buffer[rx_wr_index ++] = value;

if (rx_wr_index == RX_BUFFER_SIZE) rx_wr_index = 0;

interrupt_disable(INTPWM);

tmpi = ++ rx_counter;

interrupt_enable(INTPWM);

if (tmpi == RX_BUFFER_SIZE)

{

interrupt_disable(INTPWM);

rx_counter = 0;

interrupt_enable(INTPWM);

rx_buffer_overflow = 1;

};

}

int16_t rx_buffer_read(void)

{

int16_t data;

data = rx_buffer[rx_rd_index ];

rx_buffer[rx_rd_index ++] = 0x00;

if (rx_rd_index == RX_BUFFER_SIZE) rx_rd_index = 0;

--rx_counter;

return data;

}

int rxfree(void)

{

return RX_BUFFER_SIZE - rx_counter;

}

// tx_buffer is ring buffer PWM interrupt generated data to EtherCAT

int16_t tx_buffer_read(void)

{
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int16_t data;

data = tx_buffer[tx_rd_index ++];

if (tx_rd_index == TX_BUFFER_SIZE) tx_rd_index = 0;

interrupt_disable(INTPWM);

--tx_counter;

interrupt_enable(INTPWM);

return data;

}

void tx_buffer_write(int16_t value)

{

tx_buffer[tx_wr_index ++] = value;

if (tx_wr_index == TX_BUFFER_SIZE) tx_wr_index = 0;

++ tx_counter;

if(tx_counter == TX_BUFFER_SIZE)

{

tx_counter = 0;

}

}

Listing 4.10: Circular Buffer implementation

4.4 Data Structures

In order to communicate with the master, input and output data structures are defined. As mentioned
before, the firmware is implemented such that the TUeES030 slave has two operating modes, normal
and FRF, each with their own transmit and receive data structure mapping.

4.4.1 Normal Mode

When the normal mode is active, a large number of variables is transmitted to the master. For each
motor is transmitted: the state in which it’s in, its encoder count, associated timestamp of the encoder
count, velocity and measured current. Apart from the motor related variables, also the 8 bit digital
signal, two caliper readings, six analog outputs in the form of the force and position variables, two
extra analog readings, the line voltage and encoder timer are sent to the master.

Transmit PDO mapping

typedef struct PACKED{

uint8_t mstate1;

uint32_t count1;

uint32_t timestamp1;

int16_t velocity1;

int16_t current1;

uint8_t mstate2;

uint32_t count2;

uint32_t timestamp2;

int16_t velocity2;

int16_t current2;

uint8_t mstate3;

uint32_t count3;

uint32_t timestamp3;

int16_t velocity3;

int16_t current3;

uint8_t digital;

uint16_t caliper1;

uint16_t caliper2;
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uint16_t force1;

uint16_t force2;

uint16_t force3;

uint16_t pos1;

uint16_t pos2;

uint16_t pos3;

uint16_t analog1;

uint16_t analog2;

uint16_t linevoltage;

uint16_t ectime;

}txpdo1_t;

Listing 4.11: Normal mode transmit PDO mapping

The TUeES030 slave receives a total of 12 variables in the normal mode: a motor command, current
setpoint and feedforward signal for each motor as well as a digital input and two analog inputs.

Receive PDO mapping

typedef struct PACKED{

uint8_t mcom1;

int16_t setpoint1;

int16_t ff1;

uint8_t mcom2;

int16_t setpoint2;

int16_t ff2;

uint8_t mcom3;

int16_t setpoint3;

int16_t ff3;

uint8_t digital;

int16_t aout1;

int16_t aout2;

}rxpdo1_t;

Listing 4.12: Normal mode receive PDO mapping

4.4.2 FRF Mode

The FRF mode needs to sample data at very high frequencies (≈ 20kHz), which is too high for the
master to keep up. The TUeES030 slave can run at such high frequencies, but since the master cannot
the data that is sampled by the slave needs to be buffered and transmitted as packages to the master.
Since this buffer data package containing current setpoints and measurements is large, all non-essential
outputs, such as force/positions and measurements from motors other than the one on which a FRF
measurement is performed, are not transmitted.

Transmitted are the motor state, amount of measurements stored in the buffer, number of useful
entries in the current variable, ectime (currently not used) and the current measurements (22).

Transmit PDO mapping

typedef struct PACKED{

uint8_t mstate;

uint8_t buffer;

uint8_t entries;

uint16_t ectime;

int16_t current[FRFBUFFERSIZE ];

}txpdo2_t;
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Listing 4.13: FRF mode transmit PDO mapping

Received from the master are the 8 bit motor command, where bits 0 and 1 are for the selection of
motor 1, 2 or 3, bit 2 is for selecting brake (0) or controlled (1) and bit 3 is for enabling (1) or disabling
(0) tristate. Also the number of useful entries in the setpoint variable and the current setpoints [22]
are received.

Receive PDO mapping

typedef struct PACKED{

uint8_t mcom;

uint8_t entries;

int16_t setpoint[FRFBUFFERSIZE ];

}rxpdo2_t;

Listing 4.14: FRF mode receive PDO mapping

4.4.3 Parameters

Apart from in- and outputs that are constantly sent to and received from the slave, the firmware
also incorporates parameters that can be set for each board. These parameters are set at the start
of running the application in the current Simulink implementation in Section 5.4. The parameters
consist of the resistance, speed constant, P gain, I gain, integrator limit, encoder direction, encoder
resolution and current zero offset, for each of the maximum of three motors that can be controlled
using the board.

typedef struct PACKED{

float m1r;

float m1kv;

float m1pgain;

float m1igain;

float m1ilimit;

int8_t m1encdir;

uint16_t m1encres;

int16_t m1czero;

float m2r;

float m2kv;

float m2pgain;

float m2igain;

float m2ilimit;

int8_t m2encdir;

uint16_t m2encres;

int16_t m2czero;

float m3r;

float m3kv;

float m3pgain;

float m3igain;

float m3ilimit;

int8_t m3encdir;

uint16_t m3encres;

int16_t m3czero;

}param_t;

Listing 4.15: Parameter structure
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4.5 Miscellaneous

In this section several functions that are used throughout the micro-processor code are discussed, since
they are important and might not be understood otherwise.

4.5.1 Swap

The functions htoes, htoel, htoell, htoes2, htoel2 and htoef2 are all used to swap the bits in
variables, since the FPGA is big-endian, while the micro-processor is little-endian. The master is
usually little-endian as well. The abbreviations stand for Host to Ethercat Short, Long, Long Long
and Float, respectively. Whereas the number 2 indicates that the bit swapping is implemented in
Verilog code on the FPGA, while the rest are implemented in the C code.

4.5.2 Fixed Point Multiplication

There are two fixed point multiplication functions: q8mul and q8mul32. The first returns the 16-bit
integer result of a 16-bit integer variable multiplication with a 16 integer bit, 8 fractional bits (q16.8)
fixed point variable. The second returns a 32-bit integer result of the same multiplication.

4.5.3 Clip

The functions clip16 and clip32 saturate a, 16 or 32 bits, variable between specified low and high
values. The 32-bits version also returns a boolean stating if the value was clipped or not.
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Chapter 5

Simulink Implementation

In this chapter the implementation on the master side is discussed. The master communicates with the
slave (TUeES030 board) using the EtherCAT protocol and is currently implemented in MATLAB®

Simulink®.

Two Simulink blocks are created to communicate with the TUeES030 board, one for the normal and
the other for the FRF measurement mode. First the normal mode block will be discussed extensively
by starting from the level the user sees and going deeper into its workings, after which the FRF mode
block is discussed in a similar manner but much less detailed, since most of its workings are the same.

5.1 Normal Mode

5.1.1 Simulink Block

In Figure 5.1 the Simulink block for the normal mode is shown in the black border on the left. This
is a so called masked Simulink block, which allows the user to adapt certain parameters, which are
then used by underlying blocks to perform tasks. Masks are used to give the user ability to adapt a
block, while on the other hand abstracting the more complicated code away. The inputs and outputs
to this block are the receive and transmit PDO mappings from Subsection 4.4.1, respectively. Double-
clicking on the block reveals the block parameters (which are set in the mask configuration) as shown
in Figure 5.2. Apart from the first two (of which the uses are explained later) the parameters match
those in Subsection 4.4.3.

If we look under this mask, we end up 1 level deeper, which is the middle black border. Here an
S-function block is connected to a mux and a demux block, which are connected to the inputs and
outputs. The S-function block is again a mask, with the level beneath it shown in the right black
border. Here the parameters for the S-function block can be specified, which consist of the name of
the S-function and the names of its parameters.

5.1.2 S-function

The S-function code is shown in Listing 5.1 and is written in C. It starts with the definition of the
S-function name and level, which is standard for an S-function and obligatory. Next, simstruc.h is
included and the number of states, inputs, outputs and parameters are defined, also standard practice.
As can be seen, the S-function (and therefore also the Simulink block) has 12 inputs, 28 outputs and
10 parameters. The first two parameters are then read and are put into defines and a pointer to the
input port is created. Following this, two more header files are included, math.h for mathematical
operations and ec.h for EtherCAT functions.
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Figure 5.1: Simulink block for the normal mode

Figure 5.2: Parameters for the normal mode
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After these definitions and includes, the code consists of four functions: mdlInitializeSizes,
mdlInitializeSampleTimes, mdlOutputs and mdlTerminate, that take care of initialising the sizes
of the input/output ports (amongst others), initialising the sample times, calculating the outputs and
statements that need to be done upon termination, respectively. These functions are commonly found
in S-functions and can best be referred to in the Matlab help library. We will focus on mdlOutputs,
since this is where most of the custom code is placed.

It starts with retrieving pointers for the in- and outputs, followed by the retrieval of the LINK ID and
SLAVE NUM parameters. The first parameter is used to define for which of the TUeES030 boards in the
slavestack this S-function block is used. The second parameter is to define the position of the board in
the entire stack. Next is an if-loop that only runs on the first time using the firstrun variable, which
takes care of setting the board to the correct mode (normal or FRF) using ec Set TUeES030mode and
writing the parameters to the board using ec Set TUeES030params. These functions are discussed
in Section 5.3 and 5.4, respectively. Following the initialisation on the first run are the functions
that read and write the outputs and inputs in a for-loop each run, ec TU ES 030 read chan and
ec TU ES 030 write chan, respectively.

1 #de f i n e S FUNCTION NAME ec TU ES 030
2 #de f i n e S FUNCTION LEVEL 2
3
4 #inc lude ” s imstruc . h”
5
6 #de f i n e NSTATES 0
7 #de f i n e NINPUTS 12
8 #de f i n e NOUTPUTS 28
9 #de f i n e NPARAMS 10

10
11 #de f i n e LINK ID ssGetSFcnParam (S , 0 )
12 #de f i n e SLAVENUM ssGetSFcnParam (S , 1 )
13
14 #de f i n e U( element ) (∗ uPtrs [ element ] ) /∗ Pointer to Input Port0 ∗/
15
16 #inc lude <math . h>
17 #inc lude ” ec . h”
18
19 i n t f i r s t r u n = 0 ;
20 /∗====================∗
21 ∗ S−f unc t i on methods ∗
22 ∗====================∗/
23 s t a t i c void md l I n i t i a l i z e S i z e s ( SimStruct ∗S)
24 {
25 ssSetNumSFcnParams (S ,NPARAMS) ;
26
27 ssSetNumContStates (S ,NSTATES) ;
28 ssSetNumDiscStates (S , 0 ) ;
29
30 i f ( ! ssSetNumInputPorts (S , 1 ) ) re turn ;
31 ssSetInputPortWidth (S , 0 ,NINPUTS) ;
32 ssSetInputPortDirectFeedThrough (S , 0 , 0 ) ;
33
34 i f ( ! ssSetNumOutputPorts (S , 1 ) ) re turn ;
35 ssSetOutputPortWidth (S , 0 ,NOUTPUTS) ;
36
37 ssSetNumSampleTimes (S , 1 ) ;
38 ssSetNumRWork(S , 0 ) ;
39 ssSetNumIWork (S , 0 ) ;
40 ssSetNumPWork(S , 0 ) ;
41 ssSetNumModes (S , 0 ) ;
42 ssSetNumNonsampledZCs (S , 0 ) ;
43 }
44
45 s t a t i c void mdl In i t ia l i z eSampleTimes ( SimStruct ∗S)
46 {
47 ssSetSampleTime (S , 0 ,CONTINUOUS SAMPLE TIME) ;

37



48 ssSetOf f setTime (S , 0 , FIXED IN MINOR STEP OFFSET ) ;
49 }
50
51 s t a t i c void mdlOutputs ( SimStruct ∗S , int T t i d )
52 {
53 rea l T ∗y=ssGetOutputPortRealSignal (S , 0 ) ;
54 InputRealPtrsType uPtrs=ssGetInputPortRea lS igna lPtrs (S , 0 ) ;
55
56 #i f n d e f MATLAB MEX FILE
57
58 int T i l i n k , slavenum , ireadchan , iwr i t e chan ;
59
60 i l i n k= ( int T ) (∗ (mxGetPr(LINK ID ) ) ) ;
61 slavenum= ( int T ) (∗ (mxGetPr(SLAVENUM) ) ) ;
62
63 /∗ Write Parameters on f i r s t run∗/
64 i f ( f i r s t r u n == 0) {
65 i f ( ec Set TUeES030mode (1 , slavenum ) != 0) {
66 p r i n t f ( ”An e r r o r ocurred during swi t ch ing mode o f s l a v e %d \n” , slavenum ) ;
67 }
68 i n t iwriteparam ;
69 f o r ( iwriteparam=2; iwriteparam<NPARAMS; iwriteparam++) {
70 double ∗params = ( double ∗) (mxGetPr( ssGetSFcnParam (S , iwriteparam ) ) ) ;
71 ec Set TUeES030params ( params , ( iwriteparam −1) , slavenum ) ;
72 }
73 f i r s t r u n = 1 ;
74 }
75
76 /∗ read channe l s ∗/
77 f o r ( i readchan=0; ireadchan<NOUTPUTS; i readchan++) {
78 ec TU ES 030 read chan(&y [ i readchan ] , i readchan , i l i n k ) ;
79 }
80
81 /∗ wr i t e channe l s ∗/
82 f o r ( iwr i t e chan=0; iwr i techan<NINPUTS; iwr i t e chan++) {
83 ec TU ES 030 write chan (U( iwr i t e chan ) , iwr i techan , i l i n k ) ;
84 }
85 #end i f
86 }
87
88 s t a t i c void mdlTerminate ( SimStruct ∗S)
89 {
90 }
91
92 #i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e be ing compiled as a MEX− f i l e ? ∗/
93 #inc lude ” s imul ink . c” /∗ MEX− f i l e i n t e r f a c e mechanism ∗/
94 #e l s e
95 #inc lude ” cg s fun . h” /∗ Code gene ra t i on r e g i s t r a t i o n func t i on ∗/
96 #end i f

Listing 5.1: ec TU ES 030.c

5.1.3 Read outputs

In the function ec TU ES 030 read chan.c, which can be found in the file ec.h, the outputs of the
TUeES030 boards are cast from a struct that contains these outputs into a pointer.

1 i n t ec TU ES 030 read chan ( double ∗pvalue , i n t ichan , i n t i l i n k )
2 {
3 i f ( ( i l i n k <=0) | | ( i l i n k>nTU ES 030 ) ) {
4 p r i n t f ( ”ERROR: %s :%d , i n c o r r e c t l i n k ID , . . .
5 could not f i nd s l av e with l i n k ID : %d\n” , FILE , LINE , i l i n k ) ;
6 re turn −1;
7 }
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8
9 switch ( ichan ){

10 case 0 :
11 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>mstate1 ;
12 break ;
13 case 1 :
14 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>count1 ;
15 break ;
16 case 2 :
17 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>timestamp1 ;
18 break ;
19 case 3 :
20 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>v e l o c i t y 1 ;
21 break ;
22 case 4 :
23 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>cur rent1 ;
24 break ;
25 case 5 :
26 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>mstate2 ;
27 break ;
28 case 6 :
29 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>count2 ;
30 break ;
31 case 7 :
32 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>timestamp2 ;
33 break ;
34 case 8 :
35 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>v e l o c i t y 2 ;
36 break ;
37 case 9 :
38 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>cur rent2 ;
39 break ;
40 case 10 :
41 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>mstate3 ;
42 break ;
43 case 11 :
44 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>count3 ;
45 break ;
46 case 12 :
47 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>timestamp3 ;
48 break ;
49 case 13 :
50 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>v e l o c i t y 3 ;
51 break ;
52 case 14 :
53 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>cur rent3 ;
54 break ;
55 case 15 :
56 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> d i g i t a l ;
57 break ;
58 case 16 :
59 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> c a l i p e r 1 ;
60 break ;
61 case 17 :
62 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> c a l i p e r 2 ;
63 break ;
64 case 18 :
65 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> f o r c e 1 ;
66 break ;
67 case 19 :
68 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> f o r c e 2 ;
69 break ;
70 case 20 :
71 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> f o r c e 3 ;
72 break ;
73 case 21 :
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74 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>pos1 ;
75 break ;
76 case 22 :
77 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>pos2 ;
78 break ;
79 case 23 :
80 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>pos3 ;
81 break ;
82 case 24 :
83 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>analog1 ;
84 break ;
85 case 25 :
86 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>analog2 ;
87 break ;
88 case 26 :
89 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−> l i n e v o l t a g e ;
90 break ;
91 case 27 :
92 ∗pvalue=(double ) in TU ES 030 [ i l i n k ]−>ect ime ;
93 break ;
94 }
95
96 return 0 ;
97 }

Listing 5.2: ec TU ES 030 read chan.c

5.1.4 Write inputs

In the function ec TU ES 030 write chan.c, which can be found in the file ec.h, the outputs of the
master are cast from the double values in the Simulink diagram unto a member of a struct that
contains these outputs.

1 i n t ec TU ES 030 write chan ( double outputvalue , i n t ichan , i n t i l i n k )
2 {
3 i f ( ( i l i n k <=0) | | ( i l i n k>nTU ES 030 ) ) {
4 p r i n t f ( ”ERROR: %s :%d , i n c o r r e c t l i n k ID , . . .
5 could not f i nd s l av e with l i n k ID : %d\n” , FILE , LINE , i l i n k ) ;
6 re turn −1;
7 }
8 switch ( ichan ){
9 case 0 :

10 out TU ES 030 [ i l i n k ]−>mcom1 = ( uint8 ) outputvalue ;
11 break ;
12 case 1 :
13 out TU ES 030 [ i l i n k ]−> s e tpo in t1 = ( in t16 ) outputvalue ;
14 break ;
15 case 2 :
16 out TU ES 030 [ i l i n k ]−> f f 1 = ( in t16 ) outputvalue ;
17 break ;
18 case 3 :
19 out TU ES 030 [ i l i n k ]−>mcom2 = ( uint8 ) outputvalue ;
20 break ;
21 case 4 :
22 out TU ES 030 [ i l i n k ]−> s e tpo in t2 = ( in t16 ) outputvalue ;
23 break ;
24 case 5 :
25 out TU ES 030 [ i l i n k ]−> f f 2 = ( in t16 ) outputvalue ;
26 break ;
27 case 6 :
28 out TU ES 030 [ i l i n k ]−>mcom3 = ( uint8 ) outputvalue ;
29 break ;
30 case 7 :
31 out TU ES 030 [ i l i n k ]−> s e tpo in t3 = ( in t16 ) outputvalue ;
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32 break ;
33 case 8 :
34 out TU ES 030 [ i l i n k ]−> f f 3 = ( in t16 ) outputvalue ;
35 break ;
36 case 9 :
37 out TU ES 030 [ i l i n k ]−> d i g i t a l = ( u int8 ) outputvalue ;
38 break ;
39 case 10 :
40 out TU ES 030 [ i l i n k ]−>aout1 = ( int16 ) outputvalue ;
41 break ;
42 case 11 :
43 out TU ES 030 [ i l i n k ]−>aout2 = ( int16 ) outputvalue ;
44 break ;
45
46 }
47
48 return 0 ;
49 }

Listing 5.3: ec TU ES 030 write chan.c

5.2 FRF Mode

In the FRF mode the focus is on measuring at a fast rate, so only a single motor is active and
only the inputs and outputs to this motor are of importance and the other inputs and outputs are
disabled. In this mode the slave runs at 20 kHz, while the master runs at 1 kHz, meaning that
at each time step the master must send a packet of 20 setpoints and receive a packet of 20 current
measurements from the slave. However, this is only true if the master and slave would be synchronised
perfectly, which in practice is almost impossible to achieve. Instead, the slave has two ring-buffers;
one for receiving setpoints and one for transmitting current measurements, each containing up to 100
values, see Section 4.3. The slave can receive and send up to a maximum of 22 setpoints and current
measurements at each time step, thus allowing for a 10% overcapacity. The job of the master is to
keep the buffer full but not overflowing, by changing how many setpoints are sent at each time step,
which is indicated by the entries variable. Current measurements are sent back at the fastest rate
possible, and the entries o variable indicates how many measurements are meaningful at each time
step.

5.2.1 Simulink Block

Figure 5.3: Simulink block for the FRF mode

The Simulink block as shown in Figure 5.3 has as inputs the motor command for selecting, enabling
and tristating the motor (mcom), together with a signal that specifies that the measurement should
start (Start FRF). The outputs are the state of the selected motor (mstate), entries in the buffer
(buffer), valuable entries in the current array (entries o), time (ectime, currently not used) and
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Figure 5.4: Extra parameters for the FRF mode

an array of measured current values (current). The parameters that can be specified are the same as
those in the normal mode, except that the FRF mode has a second tab that allows the specification
of an array of setpoints and the number of total setpoints (easier to specify here than to calculate in
C), as shown in Figure 5.4.

5.2.2 S-function

The S-function for the FRF mode, ec TU ES 030FRF.c, has many similarities with the normal mode,
except for the declaration of some more variables in the beginning and extra functionalities in the
mdlOutputs function. In the firstrun if-loop, apart from setting the mode and parameters of the
board, the setpoints are retrieved together with the number of setpoints. Also a time estimate for the
duration of the measurement is calculated and the setpoints are cast from doubles to integers, saving
time later on (since this casting is only done in the beginning, instead of each iteration).

Next the signal to start the FRF measurement, go, is read as well as the output channels using the
ec TU ES 030FRF read chan function. Then the number of useful current values and number of entries
in the buffer are stored. If the start signal is given, the number of setpoints (entries) is calculated
depending on the number of entries in the buffer. As can be seen, this is done in the manner of a very
simple control algorithm to keep the number of entries in the buffer around 50. When all setpoints
have been sent to the slave, the number of setpoints is set to zero again. After this the signals are sent
using the ec TU ES 030FRF write chan function, explained in Subsection 5.2.4, where the setcount

makes sure that the correct setpoints are being sent.

The function ends with some calculations on the total current values that have been received (entries o tot),
the current number of setpoints sent (setcount) and the number of setpoints that still need to be
sent (setleft). When all setpoints have been sent, the done variable goes to 1 and some statements
are printed to the screen so the user can check if everything went correctly. If the number of current
values received do not match the number of setpoints sent, then something went wrong (probably a
delay occurred, resulting in a lost sample), and the measurement needs to be redone.

1 #de f i n e S FUNCTION NAME ec TU ES 030FRF
2 #de f i n e S FUNCTION LEVEL 2
3
4 #inc lude ” s imstruc . h”
5
6 #de f i n e NSTATES 0
7 #de f i n e NINPUTS 2
8 #de f i n e NOUTPUTS 26
9 #de f i n e NPARAMS 12

10
11 #de f i n e LINK ID ssGetSFcnParam (S , 0 )
12 #de f i n e SLAVENUM ssGetSFcnParam (S , 1 )
13 #de f i n e SETPOINTS ssGetSFcnParam (S , 1 0 )
14 #de f i n e NSETPOINTS ssGetSFcnParam (S , 1 1 )
15
16 #de f i n e U( element ) (∗ uPtrs [ element ] ) /∗ Pointer to Input Port0 ∗/

42



17
18 #inc lude <math . h>
19 #inc lude ” ec . h”
20
21 i n t done = 0 ;
22 i n t e n t r i e s = 0 ;
23 i n t e n t r i e s o t o t = 0 ;
24 i n t e s t t = 0 ;
25 i n t f i r s t r u n = 0 ;
26 i n t once = 1 ;
27 i n t n s e t s = 0 ;
28 i n t se tcount = 0 ;
29 i n t s e t l e f t = 0 ;
30 i n t t ime once = 0 ;
31
32 typede f s t r u c t {
33 i n t ∗ i s e t s ;
34 } SfunctionGlobalData , ∗pSfunctionGlobalData ;
35
36 /∗====================∗
37 ∗ S−f unc t i on methods ∗
38 ∗====================∗/
39 s t a t i c void md l I n i t i a l i z e S i z e s ( SimStruct ∗S)
40 {
41 ssSetNumSFcnParams (S ,NPARAMS) ;
42
43 ssSetNumContStates (S ,NSTATES) ;
44 ssSetNumDiscStates (S , 0 ) ;
45
46 i f ( ! ssSetNumInputPorts (S , 1 ) ) re turn ;
47 ssSetInputPortWidth (S , 0 ,NINPUTS) ;
48 ssSetInputPortDirectFeedThrough (S , 0 , 0 ) ;
49
50 i f ( ! ssSetNumOutputPorts (S , 1 ) ) re turn ;
51 ssSetOutputPortWidth (S , 0 ,NOUTPUTS) ;
52
53 ssSetNumSampleTimes (S , 1 ) ;
54 ssSetNumRWork(S , s i z e o f ( Sfunct ionGlobalData )/ s i z e o f ( r ea l T )+1);
55 ssSetNumIWork (S , 0 ) ;
56 ssSetNumPWork(S , 0 ) ;
57 ssSetNumModes (S , 0 ) ;
58 ssSetNumNonsampledZCs (S , 0 ) ;
59 }
60
61 s t a t i c void mdl In i t ia l i z eSampleTimes ( SimStruct ∗S)
62 {
63 ssSetSampleTime (S , 0 ,CONTINUOUS SAMPLE TIME) ;
64 ssSetOf f setTime (S , 0 , FIXED IN MINOR STEP OFFSET ) ;
65 }
66
67 s t a t i c void mdlOutputs ( SimStruct ∗S , int T t i d )
68 {
69 pSfunctionGlobalData ps fgd = ( pSfunctionGlobalData ) ssGetRWork (S ) ;
70
71 rea l T ∗y=ssGetOutputPortRealSignal (S , 0 ) ;
72 InputRealPtrsType uPtrs=ssGetInputPortRea lS igna lPtrs (S , 0 ) ;
73
74 #i f n d e f MATLAB MEX FILE
75
76 int T i l i n k , slavenum , ireadchan , iwr i t e chan ;
77
78 i l i n k= ( int T ) (∗ (mxGetPr(LINK ID ) ) ) ;
79 slavenum= ( int T ) (∗ (mxGetPr(SLAVENUM) ) ) ;
80
81 /∗ Write Parameters on f i r s t run∗/
82 i f ( f i r s t r u n == 0) {
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83 i f ( ec Set TUeES030mode (2 , slavenum ) != 0) {
84 p r i n t f ( ”An e r r o r ocurred during swi t ch ing mode o f s l a v e %d \n” , slavenum ) ;
85 }
86 i n t iwriteparam ;
87 f o r ( iwriteparam=2; iwriteparam <10; iwriteparam++) {
88 double ∗params = ( double ∗) (mxGetPr( ssGetSFcnParam (S , iwriteparam ) ) ) ;
89 ec Set TUeES030params ( params , ( iwriteparam −1) , slavenum ) ;
90 }
91 double ∗ s e t s = ( double ∗) (mxGetPr(SETPOINTS) ) ; // Ret r i eve array o f s e t p o i n t s
92 n s e t s = (∗ (mxGetPr(NSETPOINTS) ) ) ; // Retr i eve t o t a l number o f s e t p o i n t s
93 e s t t = nse t s /20000;
94 psfgd−> i s e t s = mal loc ( n s e t s ∗ s i z e o f ( i n t ) ) ;
95 i n t i i ;
96 f o r ( i i = 0 ; i i<nse t s ; i i ++) {
97 psfgd−> i s e t s [ i i ] = ( i n t ) s e t s [ i i ] ;
98 }
99 s e t l e f t = nse t s ;

100 p r i n t f ( ”Number o f s e t p o i n t s : %d \n” , n s e t s ) ;
101 f i r s t r u n = 1 ;
102 }
103 i n t go = U( 1 ) ; // Ret r i eve go s i g n a l
104
105 /∗ read channel ∗/
106 f o r ( i readchan=0; ireadchan<NOUTPUTS; i readchan++) {
107 ec TU ES 030FRF read chan(&y [ i readchan ] , i readchan , i l i n k ) ;
108 }
109
110 /∗ Retr i eve number o f u s e f u l cur rent va lue s ∗/
111 i n t e n t r i e s o = ( i n t ) ( y [ 2 ] ) ;
112
113 /∗ Calcu la te number o f e n t r i e s to motor depending on bu f f e r f i l l ∗/
114 i n t buf = (y [ 1 ] ) ;
115 i f ( go ) {
116 i f ( t ime once == 0) {
117 p r i n t f ( ”Measurement s tar ted , est imated time (@20kHz) = %d [ s ]\n” , e s t t ) ;
118 t ime once = 1 ;
119 }
120 i f ( buf < 50) {
121 e n t r i e s = 22 ;
122 }
123 e l s e i f ( buf == 50) {
124 e n t r i e s = 20 ;
125 }
126 e l s e i f ( buf > 50) {
127 e n t r i e s = 18 ;
128 }
129 i f ( s e t l e f t <e n t r i e s ) {
130 e n t r i e s = s e t l e f t ;
131 }
132 }
133 e l s e {
134 e n t r i e s = 0 ;
135 }
136
137 /∗ wr i t e channel ∗/
138 f o r ( iwr i t e chan=0; iwr i techan <24; iwr i t e chan++) {
139 i f ( iwr i t e chan == 0) {
140 ec TU ES 030FRF write chan (U( iwr i t e chan ) , iwr i techan , i l i n k ) ; // wr i t e mode
141 }
142 e l s e i f ( iwr i t e chan == 1) {
143 ec TU ES 030FRF write chan ( en t r i e s , iwr i techan , i l i n k ) ; // wr i t e e n t r i e s
144 }
145 e l s e i f ( ( ( iwr i techan −2) < e n t r i e s ) && ( go ) && ( ! done ) ){
146 ec TU ES 030FRF write chan ( psfgd−> i s e t s [ iwr i techan−2+setcount ] , iwr i techan , i l i n k ) ;
147 // wr i t e s e t p o i n t s
148 }
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149 e l s e {
150 ec TU ES 030FRF write chan (0 , iwr i techan , i l i n k ) ; // wr i t e 0 a f t e r s e t p o i n t s
151 }
152 }
153
154 e n t r i e s o t o t = e n t r i e s o t o t+e n t r i e s o ;
155
156 i f ( s e tcount >= nse t s ) {
157 done = 1 ;
158 }
159 se tcount = setcount + en t r i e s ;
160 s e t l e f t = nsets−se tcount ;
161
162 i f ( ( e n t r i e s o t o t >= nse t s ) && ( once ) ){
163 p r i n t f ( ”Done !\n” ) ;
164 p r i n t f ( ”Current count = %d \n” , e n t r i e s o t o t ) ;
165 p r i n t f ( ” Setcount = %d \n” , se tcount ) ;
166 once = 0 ;
167 }
168 #end i f
169 }
170
171 s t a t i c void mdlTerminate ( SimStruct ∗S)
172 {
173 pSfunctionGlobalData ps fgd = ( pSfunctionGlobalData ) ssGetRWork (S ) ;
174
175 f r e e ( psfgd−> i s e t s ) ;
176 }
177
178 #i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e be ing compiled as a MEX− f i l e ? ∗/
179 #inc lude ” s imul ink . c” /∗ MEX− f i l e i n t e r f a c e mechanism ∗/
180 #e l s e
181 #inc lude ” cg s fun . h” /∗ Code gene ra t i on r e g i s t r a t i o n func t i on ∗/
182 #end i f

Listing 5.4: ec TU ES 030FRF.c

5.2.3 Read outputs

The functioning is similar to that of the normal mode, see Subsection 5.1.3.

1 i n t ec TU ES 030FRF read chan ( double ∗pvalue , i n t ichan , i n t i l i n k )
2 {
3 i f ( ( i l i n k <=0) | | ( i l i n k>nTU ES 030FRF) ) {
4 p r i n t f ( ”ERROR: %s :%d , i n c o r r e c t l i n k ID , could not f i nd s l av e with l i n k ID : . . .
5 %d\n” , FILE , LINE , i l i n k ) ;
6 re turn −1;
7 }
8
9 switch ( ichan ){

10 case 0 :
11 ∗pvalue=(double ) in TU ES 030FRF [ i l i n k ]−>mstate ;
12 break ;
13 case 1 :
14 ∗pvalue=(double ) in TU ES 030FRF [ i l i n k ]−>bu f f e r ;
15 break ;
16 case 2 :
17 ∗pvalue=(double ) in TU ES 030FRF [ i l i n k ]−> e n t r i e s ;
18 break ;
19 case 3 :
20 ∗pvalue=(double ) in TU ES 030FRF [ i l i n k ]−>ect ime ;
21 break ;
22 case 4 :
23 case 5 :
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24 case 6 :
25 case 7 :
26 case 8 :
27 case 9 :
28 case 10 :
29 case 11 :
30 case 12 :
31 case 13 :
32 case 14 :
33 case 15 :
34 case 16 :
35 case 17 :
36 case 18 :
37 case 19 :
38 case 20 :
39 case 21 :
40 case 22 :
41 case 23 :
42 case 24 :
43 case 25 :
44 ∗pvalue=(double ) in TU ES 030FRF [ i l i n k ]−>cur rent [ ichan −4] ;
45 break ;
46 }
47 return 0 ;
48 }

Listing 5.5: ec TU ES 030FRF read chan.c

5.2.4 Write inputs

The functioning is similar to that of the normal mode, see Subsection 5.1.4.

1 i n t ec TU ES 030FRF write chan ( i n t outputvalue , i n t ichan , i n t i l i n k )
2 {
3 i f ( ( i l i n k <=0) | | ( i l i n k>nTU ES 030FRF) ) {
4 p r i n t f ( ”ERROR: %s :%d , i n c o r r e c t l i n k ID , could not f i nd s l av e with l i n k ID : . . .
5 %d\n” , FILE , LINE , i l i n k ) ;
6 re turn −1;
7 }
8 switch ( ichan ){
9 case 0 :

10 out TU ES 030FRF [ i l i n k ]−>mcom = ( uint8 ) outputvalue ;
11 break ;
12 case 1 :
13 out TU ES 030FRF [ i l i n k ]−> e n t r i e s = ( uint8 ) outputvalue ;
14 break ;
15 case 2 :
16 case 3 :
17 case 4 :
18 case 5 :
19 case 6 :
20 case 7 :
21 case 8 :
22 case 9 :
23 case 10 :
24 case 11 :
25 case 12 :
26 case 13 :
27 case 14 :
28 case 15 :
29 case 16 :
30 case 17 :
31 case 18 :
32 case 19 :
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33 case 20 :
34 case 21 :
35 case 22 :
36 case 23 :
37 out TU ES 030FRF [ i l i n k ]−> s e tpo i n t [ ichan −2] = ( in t16 ) outputvalue ;
38 break ;
39 }
40 return 0 ;
41 }

Listing 5.6: ec TU ES 030FRF write chan.c

5.3 Set mode

As mentioned previously, the firmware on the TUeES030 boards is programmed in such a way that
it can operate in two modes, the normal operating mode and the FRF measurement mode. These
two modes have different input and output data structures, as mentioned in Section 4.4. Switching
between the modes is done by setting the addresses 0x1C12:01 and 0x1C13:01 to 0x1600 and 0x1A00
for normal mode and 0x1601 and 0x1A01 for FRF mode, respectively. The EtherCAT protocol specifies
that these addresses can only be changed in pre-operational mode and only when addresses 0x1C12:00
and 0x1C13:00 are set to zero.

All this is done in the function ec Set TUeES030mode, which can be found in the file ec.c and is
shown in Listing 5.7. The function receives the inputs mode and slavenum, where the former specifies
which mode is required (1 for normal or 2 for FRF) and the latter specifies which slave in the stack
needs to be configured. It then does everything as described above using the functions ec SDOread

and ec SDOwrite to read and write to the addresses, together with some other function to write and
check the state of the slave, which will not be discussed further.

1 i n t ec Set TUeES030mode ( i n t mode , i n t slavenum )
2 {
3 uint16 index1 , index2 ;
4 u int8 o f f = 0 , on = 1 ;
5 i n t o s w r i t e i n d = s i z e o f ( index1 ) , o s w r i t e = s i z e o f ( o f f ) ;
6
7 i n t data1 = 0 , data2 = 0 ;
8 i n t o s r ead = s i z e o f ( data1 ) ;
9

10 i f (mode == 1){
11 index1 = 0x1600 ;
12 index2 = 0x1A00 ;
13 }
14 e l s e i f (mode == 2){
15 index1 = 0x1601 ;
16 index2 = 0x1A01 ;
17 }
18
19 /∗ Check i f s l a v e a l r eady in c o r r e c t mode ∗/
20 ec SDOread ( slavenum ,0 x1C12 , 1 ,FALSE,&os read ,&data1 ,ECTIMEOUTRXM) ;
21 ec SDOread ( slavenum ,0 x1C13 , 1 ,FALSE,&os read ,&data2 ,ECTIMEOUTRXM) ;
22 i f ( ( data1 == index1 ) && ( data2 == index2 ) ) {
23 p r i n t f ( ” Slave %d i s a l r eady in the c o r r e c t mode \n” , slavenum ) ;
24 re turn 0 ;
25 } e l s e {
26 i f (mode == 1){
27 p r i n t f ( ” Switching to normal mode \n” ) ;
28 }
29 i f (mode == 2){
30 p r i n t f ( ” Switching to FRF mode \n” ) ;
31 }
32
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33 /∗Switch to PRE−OP s t a t e ∗/
34 e c s l a v e [ 0 ] . s t a t e = EC STATE PRE OP;
35 /∗ r eque s t PRE−OP s t a t e f o r s l a v e ∗/
36 e c w r i t e s t a t e ( 0 ) ;
37 /∗ wait f o r s l a v e to reach OP s t a t e ∗/
38 e c s t a t e ch e ck (0 , EC STATE PRE OP, EC TIMEOUTSTATE) ;
39 i f ( e c s l a v e [ 0 ] . s t a t e != EC STATE PRE OP )
40 {
41 p r i n t f ( ” Slave %d did not reach pre−ope r a t i ona l s t a t e f o r sw i t ch ing PDO. . .
42 mapping \n” , slavenum ) ;
43 re turn −1;
44 }
45
46 /∗Switch PDO mapping accord ing to EtherCAT pro to co l ∗/
47 ec SDOwrite ( slavenum ,0 x1C12 , 0 ,FALSE, o s wr i t e ,& o f f ,ECTIMEOUTRXM) ;
48 ec SDOwrite ( slavenum ,0 x1C12 , 1 ,FALSE, o s wr i t e i nd ,& index1 ,ECTIMEOUTRXM) ;
49 ec SDOwrite ( slavenum ,0 x1C12 , 0 ,FALSE, o s wr i t e ,&on ,ECTIMEOUTRXM) ;
50
51 ec SDOwrite ( slavenum ,0 x1C13 , 0 ,FALSE, o s wr i t e ,& o f f ,ECTIMEOUTRXM) ;
52 ec SDOwrite ( slavenum ,0 x1C13 , 1 ,FALSE, o s wr i t e i nd ,& index2 ,ECTIMEOUTRXM) ;
53 ec SDOwrite ( slavenum ,0 x1C13 , 0 ,FALSE, o s wr i t e ,&on ,ECTIMEOUTRXM) ;
54
55 /∗Remap and i n i t i a l i s e s l a v e ∗/
56 e c c o n f i g (TRUE, &IOmap ) ;
57
58 /∗Switch to SAFE−OP s t a t e ∗/
59 e c s l a v e [ 0 ] . s t a t e = EC STATE SAFE OP;
60 /∗ r eque s t SAFE−OP s t a t e f o r s l a v e ∗/
61 e c w r i t e s t a t e ( 0 ) ;
62 /∗ wait f o r s l a v e to reach OP s t a t e ∗/
63 e c s t a t e ch e ck (0 , EC STATE SAFE OP, EC TIMEOUTSTATE) ;
64 i f ( e c s l a v e [ 0 ] . s t a t e != EC STATE SAFE OP )
65 {
66 p r i n t f ( ” Slave %d did not reach sa f e−ope r a t i ona l s t a t e a f t e r sw i t ch ing PDO. . .
67 mapping \n” , slavenum ) ;
68 re turn −1;
69 }
70
71 /∗Switch to OP s t a t e ∗/
72 e c s l a v e [ 0 ] . s t a t e = EC STATE OPERATIONAL;
73 /∗ r eque s t OP s t a t e f o r s l av e ∗/
74 e c w r i t e s t a t e ( 0 ) ;
75 /∗ wait f o r s l a v e to reach OP s t a t e ∗/
76 e c s t a t e ch e ck (0 , EC STATE OPERATIONAL, EC TIMEOUTSTATE) ;
77 i f ( e c s l a v e [ 0 ] . s t a t e != EC STATE OPERATIONAL )
78 {
79 p r i n t f ( ” Slave %d did not reach ope r a t i ona l s t a t e a f t e r sw i t ch ing PDO. . .
80 mapping \n” , slavenum ) ;
81 re turn −1;
82 }
83
84 /∗ Ver i fy i f s l a v e i s in c o r r e c t mode ∗/
85 ec SDOread ( slavenum ,0 x1C12 , 1 ,FALSE,&os read ,&data1 ,ECTIMEOUTRXM) ;
86 ec SDOread ( slavenum ,0 x1C13 , 1 ,FALSE,&os read ,&data2 ,ECTIMEOUTRXM) ;
87 i f ( ( data1 == index1 ) && ( data2 == index2 ) ) {
88 i f (mode == 1) {
89 p r i n t f ( ” Slave %d switched to normal mode \n” , slavenum ) ;
90 }
91 e l s e i f (mode == 2) {
92 p r i n t f ( ” Slave %d switched to FRF mode \n” , slavenum ) ;
93 }
94 re turn 0 ;
95 } e l s e {
96 p r i n t f ( ” Slave %d did not switch mode \n” , slavenum ) ;
97 re turn −1;
98 }
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99 }
100 }

Listing 5.7: ec Set TUES030

5.4 Set parameters

Each TUeES030 board can control up to three motors at once, with each motor having its own
characteristics. For this reason the parameters can be adjusted separately for each motor. The
parameters consist of the motor resistance r, motor speed constant kv, proportional (P) gain pgain,
integral (I) gain igain, integral limit ilimit, encoder direction encdir, encoder resolution encres

and current zero offset czero.

The function ec Set TUeES030params receives as inputs: a pointer to a double array with the param-
eters of a certain type (for instance an array of resistances), an integer that specifies which of eight
types of parameters is specified and an integer that indicates the slavenumber of the TUeES030 board
in the stack of which the parameters need to be adjusted. The function casts the parameter to the
correct type and passes is to the slave using ec SDOwrite and is read back and printed to be checked
by the user to ensure that the parameters are indeed adjusted.

1 i n t ec Set TUeES030params ( double ∗m1 param , i n t iwriteparam , i n t slavenum )
2 {
3 i n t os read , o s w r i t e ;
4
5 f l o a t r ;
6 f l o a t kv ;
7 f l o a t pgain ;
8 f l o a t i g a i n ;
9 f l o a t i l i m i t ;

10 in t8 encd i r ;
11 uint16 enc r e s ;
12 in t16 cze ro ;
13
14 f l o a t data ;
15 in t8 da ta i 8 ;
16 uint16 data u i16 ;
17 in t16 da ta i 16 ;
18
19 i n t motors [ 3 ] = {0x8000 , 0x8001 , 0x8002 } ;
20 i n t i ;
21 f o r ( i = 0 ; i <3; i++) {
22 switch ( iwriteparam ){
23 case 1 :
24 r = ( f l o a t ) m1 param [ i ] ;
25
26 os r ead = s i z e o f ( data ) ;
27 o s w r i t e = s i z e o f ( r ) ;
28 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,&r ,ECTIMEOUTRXM) ;
29 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ,ECTIMEOUTRXM) ;
30 p r i n t f ( ”R motor(%d) = %f \ t ” , i , data ) ;
31 break ;
32 case 2 :
33 kv = ( f l o a t ) m1 param [ i ] ;
34
35 os r ead = s i z e o f ( data ) ;
36 o s w r i t e = s i z e o f ( kv ) ;
37 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,&kv ,ECTIMEOUTRXM) ;
38 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ,ECTIMEOUTRXM) ;
39 p r i n t f ( ”Kv motor(%d) = %f \ t ” , i , data ) ;
40 break ;
41 case 3 :
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42 pgain = ( f l o a t ) m1 param [ i ] ;
43
44 os r ead = s i z e o f ( data ) ;
45 o s w r i t e = s i z e o f ( pgain ) ;
46 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,&pgain ,ECTIMEOUTRXM) ;
47 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ,ECTIMEOUTRXM) ;
48 p r i n t f ( ” pgain motor(%d) = %f \ t ” , i , data ) ;
49 break ;
50 case 4 :
51 i g a i n = ( f l o a t ) m1 param [ i ] ;
52
53 os r ead = s i z e o f ( data ) ;
54 o s w r i t e = s i z e o f ( i g a i n ) ;
55 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,& iga in ,ECTIMEOUTRXM) ;
56 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ,ECTIMEOUTRXM) ;
57 p r i n t f ( ” i g a i n motor(%d) = %f \ t ” , i , data ) ;
58 break ;
59 case 5 :
60 i l i m i t = ( f l o a t ) m1 param [ i ] ;
61
62 os r ead = s i z e o f ( data ) ;
63 o s w r i t e = s i z e o f ( i l i m i t ) ;
64 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,& i l im i t ,ECTIMEOUTRXM) ;
65 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ,ECTIMEOUTRXM) ;
66 p r i n t f ( ” i l i m i t motor(%d) = %f \ t ” , i , data ) ;
67 break ;
68 case 6 :
69 encd i r = ( in t8 ) m1 param [ i ] ;
70
71 os r ead = s i z e o f ( da ta i 8 ) ;
72 o s w r i t e = s i z e o f ( encd i r ) ;
73 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,& encdir ,ECTIMEOUTRXM) ;
74 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,& data i8 ,ECTIMEOUTRXM) ;
75 p r i n t f ( ”Encdir motor(%d) = %d \ t ” , i , d a t a i 8 ) ;
76 break ;
77 case 7 :
78 enc r e s = ( uint16 ) m1 param [ i ] ;
79
80 os r ead = s i z e o f ( data u i16 ) ;
81 o s w r i t e = s i z e o f ( enc r e s ) ;
82 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,& encres ,ECTIMEOUTRXM) ;
83 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data ui16 ,ECTIMEOUTRXM) ;
84 p r i n t f ( ”Encres motor(%d) = %d \ t ” , i , data u i16 ) ;
85 break ;
86 case 8 :
87 cze ro = ( in t16 ) m1 param [ i ] ;
88
89 os r ead = s i z e o f ( da ta i 16 ) ;
90 o s w r i t e = s i z e o f ( cze ro ) ;
91 ec SDOwrite ( slavenum , motors [ i ] , iwriteparam ,FALSE, o s wr i t e ,& czero ,ECTIMEOUTRXM) ;
92 ec SDOread ( slavenum , motors [ i ] , iwriteparam ,FALSE,&os read ,&data i16 ,ECTIMEOUTRXM) ;
93 p r i n t f ( ”Czero motor(%d) = %d \ t ” , i , da ta i 16 ) ;
94 break ;
95 }
96 }
97 p r i n t f ( ”\n \n” ) ;
98 re turn 0 ;
99 }

Listing 5.8: ec Set TUeES030params
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Chapter 6

Experimental Results

In order to determine if the new firmware performs as desired, several experiments are performed. First
the system is identified using frequency response measurements and the functioning of the feedback
loop is determined. In the second part of the chapter the influence of the feedforward signal is
investigated.

6.1 Modelling

The firmware for the TUeES030 is designed to operate up to three brushed direct current (DC) motors
in current control mode, using a combination of feedback and feedforward. For all the experiments a
Maxon RE30 310007 motor in combination with a Maxon HEDL 5540 110512 encoder was used.

In Figure 6.1 a common representation of a control scheme using feedback and feedforward is shown,
where r is the reference, e is the error, u is the control output, d is the control disturbance, y is the
plant output, η is the measurement noise, C is the feedback controller, H is the plant and FF is the
feedforward controller. Since we implemented the feedback and feedforward controllers, we assume
for the moment that these are known and we will check later if they behave as expected. We want to
identify the plant, which has as input the PWM signal generated in the FPGA and has as output the
current measurement going into the analog input, so after the low pass filter. This means the plant
consists of the H-bridge, motor and low-pass current measurement filter.

Figure 6.1: Feedback/feedforward control scheme

In order to derive a simple model of the plant, we assume that the PWM signal results in an average
voltage coming from the H-bridge being supplied to the motor and that the PWM frequency, currently
80 kHz, is high enough to neglect the dynamics of the H-bridge. For the motor a model can be made
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for the electronic part:

u = iR+ L
di

dt
+Kvω (6.1)

where u is the voltage across the motor, i is the current, R is the terminal resistance, L is the terminal
inductance, Kv is the speed constant and ω is the shaft rotation speed. Since we are interested in the
transfer function from u to i, we need an expression for ω. Luckily it is known that the mechanical
torque can be approximated well by:

τ = Jω̇ + bω (6.2)

where τ is the torque, J is the rotor inertia and b is the damping. Also the torque is directly linked
to the current via

τ = Kvi (6.3)

If we transform (6.2) to the Laplace domain, rewrite and substitute (6.3)we get the following expression
for Ω:

Ω =
T

Js+ b
=

KvI

Js+ b
(6.4)

This expression can be substituted in (6.1) to arrive at an expression for the motor:

U = IR+ LsI +KvΩ = IR+ LsI +Kv
KvI

Js+ b

= I

(
Ls+R+

K2
v

Js+ b

)
M =

I

U
=

1(
Ls+R+ K2

v
Js+b

) =
Js+ b

LJs2 + (Lb+RJ)s+Rb+K2
v

(6.5)

Now that we have a model for the motor, the low-pass filter needs to be modelled as well. Similar to
most electric low pass filter, it can be modelled as:

LP =
1

RfCfs+ 1
(6.6)

where Rf = 1kΩ is the filter resistance and Cf = 10nF is the filter capacitance. The components of
the plant are now modelled and combining them results in an expression for the plant:

H = M · LP =
Js+ b

LJs2 + (Lb+RJ)s+Rb+K2
v

1

RfCfs+ 1
(6.7)

6.2 Frequency domain analysis

Now that we have a model of the plant, experiments need to be performed in order to check whether
the system performs as expected. Looking at Figure 6.1 again, we can only set the reference, the
feedforward and feedback blocks and measure the output. This makes open loop measurements possi-
ble, by switching off the feedback control and using the feedforward block to directly feedthrough the
reference to the plant. Unfortunately, this resulted in poor measurements with a lot of noise. For this
reason we want to do closed loop measurements, in the hope that this yields better results. Normally
a closed loop measurement is done using either the two or three point method, but since we cannot
inject the noises d or η nor measure e and u, these are note possible. By following the lines in the
block and converting all signals to the frequency domain using the Fast Fourier Transform (FFT) we
can find out what the relation between y and r gives us:

Y (f) = H(f)U(f) = H(f)(D(f) + FF (f)R(f) + C(f)E(f)) (6.8)

= H(f)(D(f) + FF (f)R(f) + C(f)(R(f) − Y (f) −N(f)) (6.9)

= D(f)H(f) + FF (f)H(f)R(f) + C(f)H(f)R(f) − C(f)H(f)Y (f) − C(f)H(f)N(f) (6.10)
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to simplify, we switch of the feedforward block. Also, we multiply the whole equation with the complex
conjugate of the FFT of the reference, denoted as R∗(f).

Y (f)R∗(f) = H(f)D(f)R∗(f) + C(f)H(f)R(f)R∗(f)...

− C(f)H(f)Y (f)R∗(f) − C(f)H(f)N(f)R∗(f) (6.11)

here we see expressions for the auto power spectral density (APSD) of the input signal, SRR(f) =
R(f)R∗(f), and the cross power spectral densities (CPSDs) between several signals, which we be
denoted as SY R(f) = Y (f)R∗(f) for the CPSD between the output and the input, for instance. Now
we can rewrite the above expression further into

SY R(f) = H(f)SDR(f) + C(f)H(f)SRR(f) − C(f)H(f)SY R(f) − C(f)H(f)SNR(f) (6.12)

=
C(f)H(f)

1 + C(f)H(f)
SRR(f) +

H(f)

1 + C(f)H(f)
SDR(f) − C(f)H(f)

1 + C(f)H(f)
SNR(f)) (6.13)

Now, this expression still is not off any immediate use. However, the PSD between the two signals
gives a measure of how much power two signals have in common. Also, if two signals A(f) and B(f)
are uncorrelated, then SAB(f) ≈ 0. This means that if we choose are input signal r(t) as white noise,
we have that

SDR(f) ≈ 0, SNR(f) ≈ 0 (6.14)

and so

T (f) =
C(f)H(f)

1 + C(f)H(f)
≈ SY R(f)

SRR(f)
(6.15)

where T (f) is known as the complementary sensitivity.

Now that we know which signals to apply to and measure from the set-up, we can start experimenting.
Before moving on, it is mentioned that the coherence function between two signals gives a measure
of how correlated these two signals are. In short, a coherence of (close to) 1 means that two signals
are related linearly and there is little noise present. Why this is the case will not be explained, for
this and further reference about this section it is suggested to review the slides of the Motion Control
course.

6.2.1 Measurements

To measure the complementary sensitivity as mentioned above, a controller has to be implemented
on the TUeES030 board. As mentioned in Subsection 4.2.1 a PI controller is programmed on the
micro-processor of the FPGA. For all measurements in this section, the P gain is set to 6.0, the I gain
to 4.0 and the integrator limit to 1.0 and the motor axis is allowed to rotate freely. Five measurements
are performed with different input signals: a swept sine with low power (chirp low), swept sine with
high power (chirp low) and three white Gaussian noise (WGN) measurements with increasing power
(1, 2, 3). The resulting complementary sensitivities for the five input signals are shown in Figure 6.2.
Here we can see that the WGN measurements are more reliable for higher frequencies. Also, there is
very little noise present over a broad frequency range in all measurements, which is an indication that
the hardware and software work very well.
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Figure 6.2: Complementary Sensitivity with several test signals

Now that we have several good measurements, we are more interested in the loop return ratio (LRR),
to see if the controller resulted in a stable closed loop system and which bandwidth was achieved. For
this, the LRR can be calculated directly from the complementary sensitivity:

LRR(f) = C(f)H(f) =
T (f)

1 − T (f)
(6.16)

The LRR is shown in Figure 6.3, where it can be seen that, with the controller settings as mentioned
above, a bandwidth of about 2.5 kHz with a phase margin of around 60 degrees is achieved. Perhaps
the controller can be adjusted such that a higher bandwidth can be achieved, this will be investigated
later on.
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Figure 6.3: Loop return ratio with several test signals

Now that we have the LRR and since the controller that was applied is known, the plant is derived as

H(f) =
LRR(f)

C(f)
(6.17)

This is shown in Figure 6.4, together with the plant model derived in Section 6.1. Note that the phase
for the plant model is shown with the phase delay of sampling at 20 kHz taken into account.

From the figure it becomes clear that the model of the motor and board matches the measurement
very well. This means that the assumption that the H-bridge dynamics could be neglected is valid.
Only for very low frequencies (< 50 Hz) the measurements do not match the model, which is not a
problem since the interest in current control lies at much higher frequencies and the plant is stable at
low frequencies.
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Figure 6.4: Plant with several test signals

6.3 Time domain analysis

In this section the influence of each of the controller parameters on the response of the plant in the
time domain is investigated. A pulse signal is applied to the motor, with the motor axis fixated. Each
of the following figures shows a single part of this pulse signal, so it can be seen as a step response of
the system. Starting with Figure 6.5, where the influence of the proportional gain can be seen to act
as expected, a higher gain results in better steady-state tracking, but also in a higher overshoot. A
proportional gain of 10 already resulted in an unstable system, so care should be taken to not set it
to high.
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Figure 6.5: Step response for different proportional gains

Moving on the to the integral gain influence shown in Figure 6.6, it can be seen that a higher gain
results in a faster response. The effect is similar to that of the proportional gain, expect that the
integral effect of removing the steady state error is evident.
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Figure 6.6: Step response for different integral gains

6.3.1 Feedforward parameters

Apart from a feedback loop consisting of a PI controller a feedforward compensation is also imple-
mented on the firmware, see Sections 4.2.1 and 4.2.2. These feedforward signals compensate for part
of Equation 6.1, stated again here for convenience:

u = iR+ L
di

dt
+Kvω

The motor resistance voltage drop, iR, and back electromechanical force (back EMF), Kvω, are com-
pensated, with the resistance, R, and speed constant, Kv, being adjustable to handle different motors.
The voltage drop due to the inductance of the motor coils, L di

dt , is not compensated, since calculating
the derivative of the current requires it to be exactly known beforehand, which is difficult. Also, the
motors that can be controlled with the TUeES030 board are small and have a small inductance, so the
voltage drop due to the inductance is assumed negligible and the feedback controller can compensate
for this.

In Figure 6.7 the effect of the motor resistance feedforward compensation is shown with a constant
low proportional action of 0.2 and an increasing resistance. As expected, increasing the resistance
value results in a higher current, with the light blue line with a value of R = 1.5 being the expected
resistance of the motor used in this experiment.
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Figure 6.7: Step response for different resistance feedforward settings

The back EMF compensation is updated at 1 kHz, since the speed of the motor axis needs to be
calculated. Updating the motor speed at 20 kHz like the motor resistance feedforward would result in
a speed signal with a lot of noise which is propagated to the motor current through the feedforward.
Updating the speed at 1 kHz means that the feedback PI controller running at 20 kHz already com-
pensates the back EMF voltage drop before the feedforward signal gets the chance. Therefore looking
at the effect on the current as was done with the motor resistance feedforward previously is not that
useful. Instead the influence of the back EMF feedforward compensation is viewed on a higher level,
with a low gain proportional (Pv = 1.0) velocity controller following a set trajectory and varying the
motor speed constant to view the influence of the back EMF feedforward. This shown in Figure 6.8,
where the P, I and R gain of the current controller were set to 1, 0 and 0, respectively. Note that only
one in ten of the actual data points are plotted, in order to reduce this report’s pdf size.
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Figure 6.8: Plant with several test signals

From the figure the influence of the back EMF feedforward becomes apparent, with the red line with
a value of Kv = 0.0259 the value as specified by the manufacturer.
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Chapter 7

Manuals

7.1 SOEM for Windows

Installation
With SOEM (Simple Open EtherCAT Master) for Windows by Speciaal Machinefabriek Ketels it is
possible to read and write to and test one or several EtherCAT slaves on a machine running Windows.
In order for SOEMw to work correctly, WinPcap or Wireshark need to be installed in order to gain
access to all the network layers. Furthermore, some anti-virus software might need to be disabled
as they can prevent SOEMw from working (correctly). If TwinCAT is used in the same Windows
environment, the system needs to be restarted.

Connecting to Slave
In order to connect with the in- and outputs of a slave, first the Beckhoff adapter needs to be selected
from the dropdown menu, designated by the red box in Figure 7.1. Then the config EtherCAT
button, designated by a blue box in the same figure, needs to be selected. In the text box EtherCAT
Configuration status there should now be some text stating how many slaves are found. In the Slave
tree text box the desired slave can be selected and its IOmapping (shown by the green box) can be
expanded by clicking on it. In the figure it can be seen that we are connected with a slave that has
160 output bits (0-159) and 512 input bits (160-671), making for a total of 672 bits or 84 bytes.
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Figure 7.1: Connecting to EtherCAT slave using SOEMw

By clicking on Click for detailed mapping the in- and output mapping can be seen, as shown in
Figure 7.2.

Figure 7.2: Detailed input/output mapping

The actual values of the variables can be seen by clicking on Data, as shown in Figure 7.3. The values
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in blue are the outputs that can be sent to the slave and in green are the inputs coming from the
slave. All values are represented in hexadecimal format. To edit an output value the Value edit box is
used, where the size and representation of the variable can be specified using the radio buttons below
the box.

Figure 7.3: Input/output data

Changing parameters
By clicking SDO services, things such as the motor parameters in the case of the current firmware can
be adjusted, as shown in Figure 7.4.
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Figure 7.4: Changing parameters

Flashing the EEPROM file
By clicking on Click for slave info (see Figure 7.5) a new window opens, with all the information on
the slave, as shown in Figure 7.6. A new EEPROM (Electrically Erasable Programmable Read-Only
Memory) file can be flashed unto the slave here as well, by clicking File > Eeprom.

Figure 7.5: Slave info
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Figure 7.6: Slave information

7.2 TwinCAT
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Appendices
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Appendix A

Schematic of the electronic devices on
the TUeES030 board

Figure A.1: Schematic of the electronic devices on the TUeES030 board by Ruud van den Bogaert
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