
Perceptor functionality

The perceptor receives all of the incoming data from the pico robot and converts the data to useful
data for the worldmodel. The incoming data exists of odometry data obtained by the wheel encoders
of the pico robot. The laserdata obtained by the laser scanners. A Json file containing the global map
and location of the cabinets, this file is provided a week before the hospital challenge. Moreover, the
output of the perceptor to the world model consists of the global map, a local map, a combined map,
the current/zero position and a close proximity region. The incoming data is handled within the
perceptor by the following functions.

Init
The pico robot saves the absolute driven distance since its startup. Therefore, when the software
starts it needs to reinitialize the current position of the robot. If the robot receives its first odometry
dataset it saves this position and sets it as zero position for the worldmodel. This happens only once
when the software is started.

Locate
This function makes use of the zero-frame which is determined by the init function. Once the
odometry data is read a transformation is used to determine the position of the robot with respect to
the initialized position. This current position is outputted to the worldmodel.

Close proximity
Dynamic objects are not measured by the local map. ​To prevent collisions with the robot and a
dynamic objects or walls, a close proximity region is determined. This region is described as a circle
with the configured radius around the robot. The function returns a vector of booleans to the
worldmodel if the robot is to close to an object. To make this function more robust the laser data
which lies inside of the robot is excluded.

Scan
The laserdata is read from the sensor, however, this data is in polar coordinates. Therefore, the data
is first transformed to Cartesian coordinates. Next, the data is resampled so there is a minimum set
distance between all of the data points. This resampled data is used to calculate the angles between
all the consecutive points. To determine which data points represent a wall the data is split in
different clusters. The data is splitted using an average angle of the cluster and the angle of the next
point. Therefore, the data is split at the corners of each wall. Lastly, the points of each cluster are

marked as a wall with floating points at both sides of the walls also the position of these floating
points is stored as well. This stored information of the end points of walls is defined as current map.

Merge
In this function the new laser data is merged with an existing map to form a more robust and
complete map of the environment. Therefore, laser data in the form of a current map created by the
scan function is imported. Furthermore, the previous created output of the merge function is
imported as well, which is called the local map. Firstly, the previous created map is transformed to
the current position of the robot. Secondly, similar walls are merged. Walls are considered to be
similar if they are parallel to each other, have a small difference in angle or are split into two pieces.
If two walls are close to each other but one has a smaller length they are merged as well. The merge
settings are stored in the configuration file. The different merge cases can be seen in figure … . Once
similar walls are merged, the endpoints of walls are connected to form the corners points of the
room. Each point of a wall has a given radius, and if another point has a distance to this point which is
smaller than its radius then the points will be connected. To improve the robustness of the local map
the location of these corner points is mainly based on the location of the corner points from the
previous local map, which ensures rejection of measurement errors in the laser data. Furthermore,
the wall points that are not merged or connected at the end of the function will be removed.
Therefore, the local map will only consist of walls which are connected to each other.

Identify
The functionality of this function is to identify the property of the points in the local map. For
instance corner points can be convex or concave. This property is later used to help identify doors,
objects or cabinets in the local map. The position of the robot determines if the corner point is
convex or concave. With this property information the map is scanned for doors. For the escape
room challenge a door is identified as two convex points close to each other. A door is defined
between two walls, these walls should be approximately in one line. Also, the corner points cannot
be from the same wall to further increase the robustness of the map. It is unlikely that the local map
immediately contains two convex points which can form a door. Therefore, a possible door is
defined, so the robot can drive to the location and check if there is a real door at this position. There
are multiple scenarios where a possible door can be formed. Such as, one convex point and one loose
end, two loose ends or a loose end facing a wall. Concave points can never form a door and are
therefore excluded. When forming a possible door the length of the door and the orientation of the
walls is important as well.

Data structures used by the perceptor

Map struct

Variable Type Usage
Objects [Vector <Object>] To define the map. The map

exists of multiple objects which
can be a different type.

Function I/O Description
Transform [Map| x| y| a] > [Map] Transform all the object in the

map to a new location and
orientation. First rotate then
translate.

Print [Map] > [-] Print the names of all the
objects in the console can be
used for debugging.

removeobjects [Map] > [Map] Reorder the vector of objects
so all the objects which have
the remove flag set are at the
end of the vector an then
remove these objects from the
vector.

setobjectsold [Map] > [Map] This function sets all the
newobject variables to false
which is used to distinguish
between the data from the
objects from the new scan and

the objects already in the local
map.

Object struct

Variable Type Usage
Name [char array [15]] Visualization: Identification
Type [enum] Identification used to separate

different objects [wall | door |
test | origin | robot |
dynamicobstacle |
staticobstacle |safeDis]

Points [vector <Point>] To define objects which consist
of multiple points. Walls and
doors consist of 2, other
objects such as the origin, the
robot, arrows and so on can
consist of more points.

Drawtype [enum] Visualization: define if the
points have to be connected
with lines [points | lines]

connection [enum] Visualization: define if the first
and last point have to be
connected with a line [open |
closed]

Color [int array [3]] Visualisation: specify the color
of the object

remove [bool] Map remove function:
determine if the object will be
removed when the next
removeobjects is called.

newobject [bool] Do distinguish between the
objects that are already in the
localmap and the objects from
the new scan.

Function I/O Description
angle [Object] > [float] Calculate the angle of an

object relative to 0. Works only
when the object has 2 points
eg wall or door.

length [Object] > [float] Calculate the length of an
object. Works only when the
object has 2 points eg wall or
door.

smallestrelativeangle [Object| Object] > [float] Calculate the smallest angle
between 2 objects which both
have 2 points.

averageperpendiculardistance [Object| Object] > [float] Calculate the average
perpendicular distance
between 2 objects which both
have 2 points.

anglebetween [Object| Object] > [float] Calculate the angle between 2
objects measured from 1
direction.

gapdistance [Object| Object] > [float] Calculate the gap distance
between 2 objects which both
have 2 points. This is used
when 2 objects are
approximately parallel and
have a small average
perpendicular distance.

transform [Object| x| y| a] > [Object] This rotates and then
translates all the points in this
object with angle a an offset x
and y.

Point struct

Variable Type Usage
Location [Vector2] To describe the location of the

point in a XY frame
Property [enum] To describe the property of a

point [floating | convex |
concave | connected]

Connected point [pointer to Point] To specify to which point it is
connected

Projection point [pointer to Point] A reference to the point it is
connected to or essentially on
top of.

Parents [pointer to Objects] References to all objects which
have a point at this location

Weight [Float] A weight to describe how
certain a point is in the correct
location

Function I/O Description
sameparentobject [Point| Point] > [bool] To check if two points have the

same parent object.

Vector2 struct

Variable Type Usage
x [Float] To store the x component of

the vector.
y [Float] To store the y component of

the vector.

Function I/O Description
Operators | + | - | [Vector2| Vector2] > [Vector2] To add or subtract 2 vectors.
Operators | / | * | [Vector2| float] > [Vector2] To multiply or divide a vector

with a number.
Operator | == | [Vector2| Vector2] > [bool] Determine if 2 vectors are the

same.

Distance [Vector2] > [float] Calculate the Distance
between 2 vectors.

Length [Vector2] > [float] Calculate the length of the
input vector.

Angle [Vector2] > [float] Calculate the angle of the input
vector relative to 0.

dot [Vector2|Vector2] > [float] Calculate the dot product of 2
vectors.

unit [Vector2] > [Vector2] Calculate the unit vector of a
given vector.

transform [Vector2| x| y| a] > [Vector2] Rotate the input vector with
angle a and then translate this
vector with x and y.

Position struct

Variable Type Usage
x [float] To store the x component of

the position.
y [float] To store the y component of

the position.
a [float] To store the angle component

to the position.

Function I/O Description
Operators | + | - | [Position] > [Position] To do simple calculations with

a position variable eg the
destination or current position.

