

Midterm Presentation Restaurant Challenge

Team Rosey

Rainier Heijne, Lotte Rassaerts, Tom Minten, Lowe Blom, Marijn Minkenberg, Eline Wisse

4SC020 - Control Systems Technology group

Requirements

Requirements

Data flow diagram

Design choice

• Global Path planner \rightarrow A*

+ Fast

- + Optimal for given grid
- + Easy implementation

• Local path planner \rightarrow Open space with potential field

- + Relatively simple concept for object avoidance
 - \circ Heading determined through Open space \rightarrow fast
 - $\,\circ\,$ Driving using potential field \rightarrow smooth
- + Only uses positive sides of each method
- Localization

\rightarrow Particle filter

- + Fast implementation
- + Fast convergence in case of unknown position
- Supervisor that handles the state flow

Nice to haves

- Return to base after job
- Update "true" world map based on measurements
- Anticipate on dynamic objects
 - Change direction when moving object is detected

Questions?

Discussion

- Nice to have: Update "true" world map based on measurements
 - Is this even possible with dynamic subjects?
 - When to update world map?
 - When to delete parts of map?