Mobile Robot Control – Navigation (2/2)

MAY 10, 2023

the second second second second

Mechanical Engineering, Control Systems Technology, Robotics Lab

Outline

- Motion planning problem
 - Motion constraints
- Motion planning algorithms
 - Specifications & properties
 - Taxonomy
 - World representation
 - Graph-based solutions
 - Local motion planning algorithms
- Control objectives

- Last week

Recap

• Motion planning problem:

Given an initial pose, determine the control outputs such that, via a sequence of valid configurations, its desired final pose is reached

Source: http://gamma.cs.unc.edu/NOPATH/

Recap

- Motion planning problem:
 - Given an initial pose, determine the control outputs such that, via a sequence of valid configurations, its desired final pose is reached
- Specifications and properties:
 - Completeness
 - Optimality
 - Computational complexity

- Robustness against dynamic environment
- Robustness against uncertainty
- Kinematic and dynamic constraints

- Global vs local planner
- Graph-based representations and (global) solutions

Outline

- Motion planning problem
 - Motion constraints
- Motion planning algorithms
 - Specifications & properties
 - Taxonomy
 - World representation
 - Graph-based solutions
 - Local motion planning algorithms
- Control objectives

Local Motion Planning

- Global planning algorithms (in general) not appropriate for fast obstacle avoidance
- Global world model often incomplete or unavailable
- Goal of local planning:
 - Execute a (local) part of the global plan while avoiding collisions
- Example algorithms:
 - Artificial potential fields
 - Pure pursuit
 - Dynamic window approach
 - Open space approach

Popular in MRC: Artificial Potential Field Algorithm

- Artificial repulsion and attraction
 - Repulsion from obstacles
 - Attraction towards goal
- Global and local planning

Source: <u>https://sudonull.com/post/62343-</u> What-robotics-can-teach-gaming-AI

Artificial Potential Field Algorithm

Simulation - EMC 2019 – Group 2

Artificial Potential Field Algorithm – Considerations

- Robustness?
 - To What? What not?

Source: <u>https://medium.com/@rymshasiddiqui/path-planning-using-potential-field-algorithm-a30ad12bdb08</u>

TU/e

Artificial Potential Field Algorithm – Typical Behavior

EMC 2017 – Group 10

Pure Pursuit (Carrot Planner)

- Carrot planner
- Look ahead distance
 - Smoothness vs strict tracking

Source: https://nl.mathworks.com/help/nav/ug/pure-

pursuit-controller.html

Dynamic Window Approach

- Reactive avoidance of collisions with obstacles
- Assume piecewise constant velocities (v, ω) to approximate the trajectory by circular and straight line arcs over a short time interval
- Consider only admissible and reachable velocities within the interval
 - Admissible: robot can stop before reaching closest obstacle
 - Reachable: velocity and acceleration constraints (dynamic model)

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in *IEEE Robotics & Automation Magazine*, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

Dynamic Window Approach

- Reactive avoidance of collisions with obstacles
- Assume piecewise constant velocities (v, ω) to approximate the trajectory by circular and straight line arcs over a short time interval
- Consider only admissible and reachable velocities within the interval
- Maximizing objective function for remaining set
 - Target heading towards goal
 - Forward velocity of the robot
 - Distance to closest obstacle on trajectory

D. Fox, W. Burgard and S. Thrun, "The dynamic window approach to collision avoidance," in *IEEE Robotics & Automation Magazine*, vol. 4, no. 1, pp. 23-33, March 1997, doi: 10.1109/100.580977.

TU/e

Open Space Approach

- Instead of focusing on obstacles, focus on open space
- Horizon parameter
- Ongoing research

Outline

- Motion planning problem
 - Motion constraints
- Motion planning algorithms
 - Specifications & properties
 - Taxonomy
 - World representation
 - Graph-based solutions
 - Local motion planning algorithms
- Control objectives

Control Objectives – Abstraction

- Setpoint:
 - One instantaneous value of the desired state
- Trajectory:
 - Desired state values at multiple sample times over a certain horizon
 - Gives the designer more freedom
- Path:
 - Desired states along the geometry of the path in state space, without timing
 - Less constraining than trajectory
- Tube:
 - Allow deviation from path, state should remain inside a 'tube' or 'region'
 - Least constraining

Source: <u>Building blocks for complicated and situational aware</u> robotic and cyber-physical systems by Herman Bruyninckx

Control Objectives – Tube Example

M.S. de Wildt, C.A. Lopez Martinez, M.J.G. van de Molengraft and H.P.J. Bruyninckx. (2018). Tube Driving Mobile Robot Navigation Using Semantic Features. Master's Thesis

Control Objectives – Tube Example

Guarded Motion

"Keep on executing, till something happens"

- What is "something"?
- What to recompute?

M.S. de Wildt, C.A. Lopez Martinez, M.J.G. van de Molengraft and H.P.J. Bruyninckx. (2018). Tube Driving Mobile Robot Navigation Using Semantic Features. Master's Thesis

Control Objectives – MRC

- MRC Robots' Interfaces:
 - Send velocity command in local (robot) frame
- Your approach can contain other objectives
 - Use cascaded control loops to achieve this
 - Bandwidth
 - Use your knowledge from other control courses!

Some conclusive considerations

- Many planning concepts exist
- How to obtain robustness?
- How to spend your computational resources?
 - Trial and error?
 - Compute a path at each sample? Or, recomputation when required?
- How to take (which) semantics into account?
- How to take physical constraints into account?
- What level of discretization or abstraction is required?

Assignment 2 – Obstacle Avoidance in a Corridor

- Let the robot move 5 meters through a corridor without collisions with (unknown) obstacles
- Open assignment, select/develop your own algorithm

