
Localisation assignment 2
Towards Accurate Localisation with a Particle Filter
The code for this assignment can be found at:

https://gitlab.tue.nl/mobile-robot-control/mrc_particlefilter_students

In the previous assignment you have developed an algorithm commonly described as a
dead-reckoning approach. The main strategy was to process the odometry information you
received to update the best estimate of the current robot pose. In the assignment you
showed that, under certain conditions, this is indeed possible. However, the method breaks
down once the assumption on perfect odometry is dropped. Wheel slip and noisy data lead
to an ever increasing difference between the actual and estimated pose.

Within the lecture and this assignment we continue on our path towards robot localisation.
The main insight from the lecture was that only given the imperfect information provided by
the odometry sensor we do not have enough information to infer our current location and
orientation. By including information from multiple sources, i.e. sensor fusion, we can get a
better estimate than by using the information of a single sensor.

Within this assignment we will explore the inner workings of the particle filter. You will
develop the core functionality of the particle filter framework we have developed for you.
After completing the assignment you will not only understand the core concepts, but also be
able to locate your robot within a known occupancy grid map of the environment in which
you deploy your robot.

Before you start the assignment, please note the following:

Getting Familiar with the Framework

Note

Make sure you are running the mrc-sim when doing the assignments

Note

Throughout this assignment we will use tests to make sure that your intermediate
results are implemented correctly. A correct result indicates that your implementation is
likely correct, but does not guarantee it. There is a possibility that you've introduced
unforeseen bugs into your implementation.

https://gitlab.tue.nl/mobile-robot-control/mrc_particlefilter_students


We, the tutors and organizers of this course, understand that the code-base in front of you
might seem daunting, or even scary. Don't be! We will use this zero-th assignment to make
you comfortable with working with the code.

We do assume, however, that you have completed the C++ tutorials. Furthermore, we
assume that you have a basic understanding of the underlying concepts of the particle filter,
i.e. if you have followed and understood the lecture you're good to go.

To run the tests we've written for you, such that you can efficiently verify the correct
implementation of your methods follow these instructions

In VScode
1. Bring up your command palette with ctrl-shift-p
2. Select Cmake: Build Target
3. In the menu that pops up select all.
4. Bring up your command palette with ctrl-shift-p
5. Select Cmake: Run tests
6. The output tab of the terminal window will show the results of your tests

Using Cmake in terminal
1. Build your project

2. Run the binary (located in ./bin) of the test you want to run 
(i.e. ./assignment1 for the first assignment)

We've furthermore provided simplified versions of the main file, such that you can test the
relevant parts of the software piece by piece. These files can be recognized by
main_ex1.cpp through *main_ex3.cpp. Their respective executables are named demo1
through demo3. To visualize the working of your code use the demo executables.

Assignment 0: Explore the code-base

The Assignment

Preparation

Download the code-base and make sure it is opened correctly in vscode
 Without changing anything, compile the code, make sure there are no errors.
 Make sure you can run the tests above, do not worry when all of them return a fail
or a segfault.

Exploration

 Explain in a few concise sentences per item how the code is structured.
What is the difference between the ParticleFilter and ParticleFilterBase classes, 
and how are they related to each other?



Having obtained a bit of insight into the core working of the code-base, let's start with the
implementation of the core functionality of the particle filter. As you know, the particle filter
estimates the pose of the robot through a set of weighted particles, each particle represents
an hypothesis of the current robot pose. The set of all particles approximates the probability
distribution over all possible robot poses.

Within assignment 1 we will implement the methods which construct this set of particles. 
As you might have discovered, the ParticleFilter classes contain vectors storing all their
particles. These vectors are initialized when either one of their constructors are called:

more specifically the particles itself are initialized by calling

How are the ParticleFilter and Particle class related to eachother.
Both the ParticleFilter and Particle classes implement a propagation method. What
is the difference between the methods?

Tip: The comments in the header files are often a great way to help your
understanding of what each method implements

Assignment 1: Initialize the Particle Filter

ParticleFilterBase::ParticleFilterBase(const World &world, const int &N) 

ParticleFilterBase::ParticleFilterBase(const World &world, 
           
const double mean[3], 
           
const double sigma[3], 
           
const int &N) 

Particle::Particle(const World &world, 
       const double &weight, 
                   std::default_random_engine *generatorPtr) 

Particle::Particle(const World &world, 
       const double mean[3], 
       const double sigma[3], 
       const double &weight, 
       std::default_random_engine 
*generatorPtr) 

The Assignment

Implementation



Having initialized the filter, we are interested in extracting the pose prediction from the filter.
As stated in the lectures, the filter approximates the probability distribution of the robot pose
by a cloud of particles. The filter prediction is then the expected value of this distribution. 
Within our code-base, the expected value (or the average pose), is calculated in the
following method.

What is the difference between the two constructors?
Complete both constructors
Run assignment1 and validate that your methods function correctly.
Run demo1, open sim-rviz, and explain the results

Tip: Do not forget to implement the ParticleFilterBase Constructor

Explanation

 Explain in a few concise sentences per item
What are the advantages/disadvantages of using the first constructor, what are the
advantages/disadvantages of the second one?
In which cases would we use either of them?

Assignment 2: Calculate the filter prediction

Pose ParticleFilterBase::get_average_state(); 

The Assignment

Implementation

Complete the get_average_state method
Run your code, and examine the output of the method.
Run assignment2 and validate that your methods function correctly.
Run demo2, open sim-rviz, and explain the results

Explanation

 Explain in a few concise sentences per item:
Interpret the resulting filter average. What does it resemble? Is the estimated robot
pose correct? Why?
Imagine a case in which the filter average is inadequate for determining the robot
position.

Tip: The averaging of one of the three state-variables may be a non-trivial exercise



The Prediction Step

The particles in our filter represent hypothesis of our current robot pose. So far we've
initialized these particles given some prior knowledge of our robot pose, either uniformly
across our map or spread around our initial estimate. However, as you may know, robots
are not meant to be stationary objects in our world, most robots tend to move around. In the
prediction step we incorporate the sensor information that corresponds to this movement in
our filter estimates.

Our odometry information consists of three values, two translational  and  components
and a rotational component . These values represent the distance driven or angle rotated
since the robot was started. And are thus defined with respect to the odometry reference
frame. These measurements are corrupted by noise, wheel slip, and other phenomena
which were not modeled however. The actual distance and angle driven is thus the sum of
the received sensor information and an unknown noise component.

To update the poses of our set of particles, we run the following method:

in which dPose, is the distance and angle traveled since the last propagation step,
proc_noise is the magnitude of the noise we inject during the propagation, and offset_angle
is the current rotation between the odometry frame and the robot frame.

Assignment 3: Propagation of Particles

x y

θ

ParticleFilterBase::propagateSamples(Pose dPose, 
          
const double offset_angle); 

void Particle::propagateSample(const Pose &dPose, 
          const double 
proc_noise[2], 
          const double 
&offset_angle); 

The Assignment

Implementation

Complete the propagateSample method
Run your code, and examine the output of the method.
Run assignment3 and validate that your methods function correctly.
Run demo3, open sim-rviz, and explain the results

Tip: In order to perform an accurate propagation, first transform dPose into robot
frame, afterwards transform dPose_robotFrame into the map frame.



The Correction Step

In the previous assignments we have implemented the initialization, estimation and
propagation of the particle filter. An observant programmer would however have noticed that
we, so far, have not improved over the methods implemented in localisation assignment 1.
One could even argue that we have implemented an inferior approach, due to the higher
computational complexity and the inclusion of an even larger amount of uncertainty due to
the injection noise in the propagation step.

The power of the particle filter approach starts to become apparent once we include multiple
types of sensor information. As we have seen, odometry information is a valuable source of
localisation information, but as we will see in this assignment the inclusion of visual
information, in the form of LRF scan, makes the prediction more reliable over the longer
term.

In order to incorporate these LRF measurements ( ) we will assign a weight to each
particle given a prediction of the measurement for that particle. Each measurement ( ) is
treated independently. In this assignment it is your task to generate the prediction, given the
build in methods of the world model, and to compute the likelihood of each measurement
given this prediction, and the parameters in the provided config file. To implement the last
step consult the following description here, and find the following empty methods in your
code:

Explanation

 Explain in a few concise sentences per item:
Why do we need to inject noise into the propagation when the received
odometry infromation already has an unkown noise component.
What happens when we stop here, and do not incorporate a correction step?

Assignment 4: Computation of the likelihood of a Particle

R, Θ

ri, θi

LikelihoodVector ParticleFilterBase::computeLikelihoods( 
           
const measurementList &measurement,  
           
World &world) 

Likelihood Particle::computeLikelihood(const measurementList &data, 
           
World &world, 
           
const MeasModelParams &lm) 

https://calvinfeng.gitbook.io/probabilistic-robotics/basics/robot-perception/01-beam-models-of-range-finders


Resampling

So far we've implemented the main parts of the particle filter. We are able to generate
particles, take their average, propagate the samples and compute their likelihoods.
However, as you might have guessed from the section title, a last step is to resample the
particles periodically, to quote Probabilistic Robotics:

"The resampling step has the important function to force particles back to the posterior 
. In fact, an alternative (and usually inferior) version of the particle filter would

never resample, but instead would maintain for each particle an importance that is
initialized by 1 and updated multiplicatively (...) Such a particle filter algorithm would still
approximate the posterior, but many of its particles would end up in regions of low
posterior probability. As a result, it would require many more particles; how many
depends on the shape of the posterior."

In other words, if we do not resample, a lot of particles will end up in regions of the
environment which are very unlikely to be the accurate robot pose. When we resample, we

double Particle::measurementmodel(const measurement &prediction, 
          const 
measurement &data, 
          const 
MeasModelParams &lm) const 

The Assignment

Implementation

Complete the measurementmodel method
Complete the computelikelihood method
Run your code, and examine the output of the method.
Run assignment3 and validate that your methods function correctly.

Explanation

 Explain in a few concise sentences per item:
What does each of the component of the measurement model represent, and
why is each necessary.
With each particle having  rays, and each likelihood being ,
where could you see an issue given our current implementation of the
likelihood computation.

N >> 1 ∈ [0, 1]

Assignment 5: Resampling our Particles

bel(xt)



redraw our samples randomly but make sure that regions with high likelihood are
represented heavily in the new particle set, regions with low likelihood are represented less. 
Or as Probabilistic Robotics puts it:

" The resampling step is a probabilistic implementation of the Darwinian idea of survival 
of the fittest: It refocuses the particle set to regions in state space with high posterior 
probability. By doing so, it focuses the computational resources of the filter algorithm 
to regions in the state space where they matter the most"

A wide variety of resampling algorithms exist, however many of them rely on largely the
same insights. In the assignment you will be implementing the stratified and multinomial
resampling schemes as they are outlined in the pseudo code below (based on here and
here).

STRATIFIED RESAMPLING 

GIVEN: Particles x and size N 

------------------------------- 

n = 0 

m = 1 

Q_0:N = cummulative_sum(particle_weights) 

while n <= N: 

 u_0 ~ U(0,1/N] 

 u = u0 + n/N 

 while Q_m < u 

  m = m + 1 

 n = n + 1 

 y_n = x_m 

------------------------------- 

RETURN Particles y  

MULTINOMIAL RESAMPLING 

GIVEN: Particles x and size N 

------------------------------- 

n = 0 

Q_0:N = cummulative_sum(particle_weights) 

while n <= N: 

 m = 1 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7079001
https://www.mdpi.com/1424-8220/21/2/438


The methods you need to implement are

and

Testing the result

 u ~ U(0,1] 

 while Q_m < u 

  m = m + 1 

 n = n + 1 

 y_n = x_m 

------------------------------- 

RETURN Particles y  

void Resampler::_multinomial(ParticleList &Particles, const int N) 

void Resampler::_stratified(ParticleList &Particles, const int N) 

The Assignment

Implementation

Complete the _multinomial method
Complete the _stratified method.

The Assignment

Test the developed particle filter framework in simulation. How accurate is the
implemented algorithm? What are strengths and weaknesses? Write down your
observations.


