Lecture: Localisation Mathematical Basics, Dead-Reckoning and Localization

MOBILE ROBOT CONTROL 2024

Gijs van Rhijn, Gijs van de Brandt, Koen de Vos, Jos Elfring

Department of Mechanical Engineering – Control Systems Technology

What is (robot) localization?

Compute the robot pose with respect to some frame of reference (e.g. a map)

Why do we need robot localization?

Being able to use a map, requires the pose of our robot with respect to the map

Why do we need robot localization?

Global path planning: we cannot plan a path if we do not know where we are!

Where is my goal point?

Why do we need robot localization?

Local path planning: we need to know the location of our waypoints.

"What" do we localize on?

Today, maps used for localization will be represented by an occupancy grid

• Discretized world in which is cell is either occupied or empty

Intermezzo – brief recap on probability theory

Recap: random variables

Discrete random variable

- X can take on a countable number of values in the set $\{x_1, x_2, ..., x_n\}$
- P(X=x_i), or P(x_i), is the probability that the random variable X takes on value x_i and P(·) is called **probability mass function**

Continuous random variable

- X takes values in the continuum
- p(X=x), or p(x), is a **probability density function** and

$$\Pr(x \in (a,b)) = \int^{b} p(x) dx$$

а

Recap: joint and conditional probabilities

Joint probability: P(X=x and Y=y) = P(x,y)

• If X and Y are **independent**, then P(x,y) = P(x) P(y)

Conditional probability: P(x | y) is the probability of **x given y** P(x | y) = P(x,y) / P(y)P(x,y) = P(x | y) P(y)

• If X and Y are **independent**, then

 $P(x \mid y) = P(x)$

Recap: Bayes theorem

$$P(x|z) = \frac{P(z|x)P(x)}{P(z)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$
$$P(z) = \sum_{x} P(z|x)P(x)$$

Recap: Bayesian filter

State - vector with quantities that must be estimated

Recap: Bayesian filter \rightarrow localization

State – 2D robot pose: x-position, y-position, orientation

Types of localization problems

- "Tracking"
 - Initial position is known
 - Keep track of position while moving

This will be the scenario in the final challenge

- "Global localization"
 - Initial position can be anywhere
 - Once position has been found start tracking
- "kidnapped robot"
 - Start by tracking
 - Trigger global localization when needed

Problem statement

Goal: estimate 2D robot pose $x = \begin{bmatrix} y_r \\ \theta_r \end{bmatrix}$

We have:

- Prediction model:
 - $x_t = f_k(x_{t-1}, u_t, v_{t-1})$
 - Knowledge on how state x evolves over time noise represents confidence model
- Measurement model:
 - $z_t = h_t(x_t, u_t, n_t)$
 - Way to relate measurements to the state *x* noise represents measurement noise

Problem statement: graphical representation

Remark on probability notations

In these slides:

- PDF representing the 2D robot pose: $p(x_t)$
- PDF representing a measurement: $p(z_t)$

Markov assumption for sequence modeling

TU/e

Probabilistic modelling: location prediction

Probabilistic modelling: sensor update

Probabilistic modelling: sensor update

Probabilistic modelling: overview of steps

Initialize

•

- $p(x_{t-1})$
- Predict robot pose in next timestep using prediction model:

$$p(x_t|z_{1:t-1}) = \int p(x_t|x_{t-1})p(x_{t-1}|z_{1:t-1}) dx_{t-1}$$

The integrals can be hard to compute! How about an approximation?

Update robot pose using measurement model $p(x_t|z_t) = \frac{p(z_t|x_t)p(x_t|z_{1:t-1})}{p(z_t|z_{1:t-1})},$

where: $p(z_t|z_{1:t-1}) = \int p(z_t|x_t)p(x_t|z_{1:t-1}) dx_t$ (normalization constant)

• Repeat

Particle filter idea

- Approximate a PDF representing a continuous random variable by a set of N 'particles'
- Each particle represents a *possible* value of the state (i.e. each particle is a 3D vector representing a 2D robot pose)
- Use prediction and update steps introduced on previous slide

Particle filter intuition

Problem: we cannot sample from the unknown distribution we would like to estimate

- Sample from "Proposal distribution" (q) instead
- Use weights to compensate for sampling from q

The particle filter represents a distribution by a set of weighted samples!

Particle filter properties

Advantages:

- Hard-to-compute integrals turn into summations over N particles
- Particles can be distributed over map in any form → flexibility in 'shape' of PDF
- Prediction and measurement models have minimal restrictions (e.g. noise can be non-Gaussian, models van be non-linear)

Disadvantages:

- Computational load proportional to number of particles *N*
- Number of required particles scales poorly with dimension of state (which is 3 in our case)

Particle filtering: representing the PDF by a set of weighted points

•
$$p(x_{0:t}|z_{0:t}) \approx \sum_{i=1}^{N_s} w_t^i \,\delta(x_{0:t} - x_{0:t}^i) = \hat{p}(x_{0:t}|z_{0:t})$$

weight coordinates

•
$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases}$$

•
$$\int \delta(x) \, dx = 1$$

•
$$w_t^i \propto \frac{p(x_t^i)}{q(x_t^i)} \leftarrow$$
 the weight compensates for the proposal density

•
$$\sum_{i=1}^{N_s} w_t^i = 1$$

Lecture Localisation 1

25

Initializing a particle filter for robot localization

We have assumed an initial guess is available

- Sample N particles from the initial guess
 (e.g., a uniform distribution over a part of the map)
- Set all particle weights w_i to 1/N

Prediction step

- Move each of the particles according to our model: $f(x_i, u, v)$
 - *x_i*: each of the particle states
 - *u*: control input that might be available (**same** for all particles)
 - v: independent noise sample (**different** for each particle) \rightarrow 'diversifies' particles
- Values weights do not change

Predictions only – what about measurements?

- We can keep repeating this prediction step
- Our estimate will diverge
- How do we incorporate measurements?

Incorporate sensor data by weighing with Bayes' rule

- Use predicted density as a proposal density
- Update particle weights using Bayes' rule (do not change particle locations):

 $w_t = \frac{1}{c}p(z_t|x_t^i)w_{t-1}$, where *c* is a normalizing constant

Resampling

After a few time steps, all but one particle will have a weight of 0

- Resample (with replacement) each particle using its weight as a probability of • being chosen
 - low-weight particles disappear, high-weight particles are duplicated
 - Reset the weight to 1/N٠

stacked on the

Multinomial resampling – implementation

Example with 5 particles

Sample from a uniform distribution U(0,1) $\rightarrow N_s$ = five times

- Sample between 0 and 0.1 \rightarrow duplicate particle one
- Sample between 0.1 and 0.3 \rightarrow duplicate particle two
- Sample between 0.3 and 0.8 \rightarrow duplicate particle three

•

...

Pseudocode

```
Algorithm Particle_filter(X_{t-1}, u_t, z_t):
1:
                  \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
3:
                   for m = 1 to M do
                         sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
4:
                        w_t^{[m]} = p(z_t \mid x_t^{[m]})
5:
                        \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                   endfor
8:
                   for m = 1 to M do
                         draw i with probability \propto w_t^{[i]}
9:
                         add x_t^{[i]} to \mathcal{X}_t
10:
                   endfor
11:
12:
                   return \mathcal{X}_t
```

For more detailed information see:

Elfring, J.; Torta, E.; van de Molengraft, R. Particle Filters: A Hands-On Tutorial. Sensors 2021, 21, 438. https://doi.org/10.3390/s21020438

F. Gustafsson, "Particle filter theory and practice with positioning applications," in *IEEE Aerospace and Electronic Systems Magazine*, vol. 25, no. 7, pp. 53-82, July 2010, doi: 10.1109/MAES.2010.5546308

Particle filter: example animation

- Note how the weighing and resampling steps aren't explicitly visualized here.
 - Only the result the prediction is shown
 Uniform weights
- Rotation is also part of each sample
 - (samples are a random state of x, y, theta)
- Next: how to compute $p(z_t|x_t)$

Time for a break!

After the break:

- How to calculate $p(z_t|x_t)$
- How to initialize a particle filter
- Obtaining a pose from the particle filter

Welcome back!

To discuss:

- How to calculate $p(z_t|x_t)$
- How to initialize a particle filter
- Obtaining a pose from the particle filter

Recursive State Estimation Beam-based model

For now, let's define a measurement as a vector of ranges:

•
$$z_k = \begin{bmatrix} (r_0, \theta_0) \\ (r_1, \theta_1) \\ \vdots \\ (r_2, \theta_2) \end{bmatrix}$$
,

• Given a map, a robot pose, and *appropriate algorithms* we can generate a prediction of this measurement should be

•
$$z_k^* = \begin{bmatrix} (r_0^*, \theta_0) \\ (r_1^*, \theta_1) \\ \vdots \\ (r_2^*, \theta_2) \end{bmatrix}$$

Appropriate algorithms?

A family of algorithms called Ray casters.

Don't worry about them for now, we have provided you with one for the assignment :)

Observe that we now have a measurement and a measurement prediction in the ideal (modeled) case.

Core Idea:

The mismatch between the two tell us something about whether the robot pose is correct.

How to quantify this mismatch as a probability $p(z_t|x_t)$?

- For a single ray, we identify four sources of "disturbances"
 - 1. Local measurement noise
 - 2. Unexpected obstacles (object not present in the map)
 - 3. Failures (Glass, Black obstacles)
 - 4. Random measurements
- We assign each source a distribution and probability of occurring

Local Measurement Noise

$$p_{short}(z_t^k | x_t, m) = \begin{cases} \eta \mathcal{N}(z_t^k; z_t^{k*}, \sigma_{hit}^2) & \text{if } 0 \le z_t^k \le z_{max} \\ 0 & \text{otherwise} \end{cases}$$

Evaluating a Gaussian does not guarantee p_{short} is between 0 and 1, which is why a normalizer is needed:

$$\eta = \left(\int_0^{z_{max}} \mathcal{N}(z_t^k; z_t^{k*}, \sigma_{hit}^2) dz_t^k\right)^{-1}$$

(a) Gaussian distribution $p_{\rm hit}$ $p(z_t^k \mid x_t, m)$

 z_t^k : measured range z_t^{k*} : true range σ_{hit} : std. dev. measurement noise $\mathcal{N}(x; \mu, \sigma_{hit}^2)$: evaluate Gaussian with mean μ and standard deviation σ at x

Could be that the robot measures unexpected obstacles (measure nearby objects not in the map). Modeled via exponential distribution.

 $\eta = \frac{1}{1 - e^{-\lambda_{short} z_t^{k*}}}$

$$p_{short}(z_t^k | x_t, m) = \begin{cases} \eta \lambda_{short} e^{-\lambda_{short} z_t^k} \\ 0 \end{cases}$$

 $if \ 0 \le z_t^k \le z_t^{k*}$ otherwise

$$p(z_t^k \mid x_t, m)$$

$$z_t^{k*} z_{\max}$$

(b) Exponential distribution $p_{\rm short}$

Well-known measurement failures happen on black or non-reflective objects or glass. In that case typically, a max range measurement is returned.

$$p_{max}(z_t^k | x_t, m) = \begin{cases} 1 & z_k^t = z_{max} \\ 0 & otherwise \end{cases}$$

Random measurements that are entirely unexplained may occur (although not frequently):

$$p_{rand}(z_t^k | x_t, m) = \begin{cases} \frac{1}{z_{max}} & \text{if } 0 \le z_k^t < z_{max} \\ 0 & \text{otherwise} \end{cases}$$

Taking the weighted average of these distributions yields the overall model:

$$p(z_t^k | x_t, m) = \mathbf{z}_{hit} p_{hit} (z_t^k | x_t, m) + \mathbf{z}_{short} p_{short} (z_t^k | x_t, m) + \mathbf{z}_{max} p_{max} (z_t^k | x_t, m) + \mathbf{z}_{rand} p_{rand} (z_t^k | x_t, m)$$

Probability of entire measurement vector by assuming independence of rays.

```
Algorithm beam_range_finder_model(z_t, x_t, m):
1:
2:
                q = 1
                for k = 1 to K do
3:
                     compute z_t^{k*} for the measurement z_t^k using ray casting
4:
                     p = z_{\text{hit}} \cdot p_{\text{hit}}(z_t^k \mid x_t, m) + z_{\text{short}} \cdot p_{\text{short}}(z_t^k \mid x_t, m)
5:
                           +z_{\max} \cdot p_{\max}(z_t^k \mid x_t, m) + z_{rand} \cdot p_{rand}(z_t^k \mid x_t, m)
6:
7:
                     q = q \cdot p
8:
                 return q
```

• Does this assumption really hold true?

Particle filter: example animation

- Sensor data not explicitly shown in this animation
- Particles are resampled based on the sensor model

Estimating the pose from a particle filter

Remember:

- $p(x_{0:t}|z_{0:t}) \approx \sum_{i=1}^{N_s} w_t^i \, \delta(x_{0:k} x_{0:k}^i)$
- $E(x_t) \approx \sum_{i=1}^N w_t^i x_{0:t}^i$
- Is this a good pose estimate to use?
 - When is it, when is it not?

Initializing a particle filter

- Decide on the number of particles N
- Draw N particles from the initial distribution
- Run consecutive update/prediction steps!

This week's exercise

- Particle filter predictions
- Generate new samples from the proposal distribution $p(x_{t+1}|x_t)$
 - Skip Bayes' update
- What happens to the prediction over time?
- What would be the benefit of adding measurement updates?

Next week's exercise

- Measurement data updates!
- Update the weight of our particles using Bayes' rule.
- Close the loop by resampling the particles.
 - Fully functioning particle filter!

