Lecture: Localisation

Mathematical Basics, Dead-Reckoning and Localization

MOBILE ROBOT CONTROL 2024

Gijs van Rhijn, Gijs van de Brandt, Koen de Vos, Jos Elfring

What is (robot) localization?

Compute the robot pose with respect to some frame of reference (e.g. a map)

Why do we need robot localization?

Being able to use a map, requires the pose of our robot with respect to the map

Why do we need robot localization?

Global path planning: we cannot plan a path if we do not know where we are!

Why do we need robot localization?

Local path planning:
we need to know the location of our waypoints.

"What" do we localize on?

Today, maps used for localization will be represented by an occupancy grid

- Discretized world in which is cell is either occupied or empty

Intermezzo - brief recap on probability theory

Recap: random variables

Discrete random variable

- X can take on a countable number of values in the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- $\mathrm{P}\left(X=x_{i}\right)$, or $\mathrm{P}\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i} and $\mathrm{P}(\cdot)$ is called probability mass function

Continuous random variable

- X takes values in the continuum
- $\mathrm{p}(X=x)$, or $\mathrm{p}(x)$, is a probability density function and

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

Recap: joint and conditional probabilities

Joint probability: $P(X=x$ and $Y=y)=P(x, y)$

- If X and Y are independent, then

$$
P(x, y)=P(x) P(y)
$$

Conditional probability: $P(x \mid y)$ is the probability of \boldsymbol{x} given \boldsymbol{y}

$$
\begin{aligned}
& P(x \mid y)=P(x, y) / P(y) \\
& P(x, y)=P(x \mid y) P(y)
\end{aligned}
$$

- If X and Y are independent, then

$$
P(x \mid y)=P(x)
$$

Recap: Bayes theorem

$$
\begin{gathered}
P(x \mid z)=\frac{P(z \mid x) P(x)}{P(z)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}, \\
P(z)=\sum_{x} P(z \mid x) P(x)
\end{gathered}
$$

Recap: Bayesian filter

State - vector with quantities that must be estimated

Recap: Bayesian filter \rightarrow localization

State - 2D robot pose: x-position, y-position, orientation

System model that describes how the robot moved over time (e.g. using wheel encoders)
$\longrightarrow \quad \begin{gathered}\text { Predict } \\ \text { 2D pose }\end{gathered}$

Measurement model that relates map-related measurements to robot pose

Types of localization problems

- "Tracking"
- Initial position is known

- Keep track of position while moving

This will be the scenario in the final challenge

- "Global localization"
- Initial position can be anywhere
- Once position has been found start tracking
- "kidnapped robot"
- Start by tracking
- Trigger global localization when needed

Problem statement

Goal: estimate 2D robot pose $\mathrm{x}=\left[\begin{array}{l}x_{r} \\ y_{r} \\ \theta_{r}\end{array}\right]$
We have:

- Prediction model:
- $x_{t}=f_{k}\left(x_{t-1}, u_{t}, v_{t-1}\right)$
- Knowledge on how state x evolves over time - noise represents confidence model
- Measurement model:
- $z_{t}=h_{t}\left(x_{t}, u_{t}, n_{t}\right)$
- Way to relate measurements to the state x - noise represents measurement noise

Problem statement: graphical representation

Remark on probability notations

In these slides:

- PDF representing the 2D robot pose:

$$
p\left(x_{t}\right)
$$

- PDF representing a measurement:

$$
p\left(z_{t}\right)
$$

Markov assumption for sequence modeling

Probabilistic modelling: location prediction

Probabilistic modelling: sensor update

Probabilistic modelling: sensor update

TU/e

Probabilistic modelling: overview of steps

Initialize

- $p\left(x_{t-1}\right)$
- Predict robot pose in next timestep using prediction model:

$$
p\left(x_{t} \mid z_{1: t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid z_{1: t-1}\right) d x_{t-1}
$$

The integrals can be hard to

- Update robot pose using measurement model

$$
\begin{array}{cc}
p\left(x_{t} \mid z_{t}\right)=\frac{p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid z_{1: t-1}\right)}{p\left(z_{t} \mid z_{1: t-1}\right)}, & \text { approximation? } \\
\text { where: } p\left(z_{t} \mid z_{1: t-1}\right)=\int p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid z_{1: t-1}\right) d x_{t} & \text { (normalization constant) }
\end{array}
$$

- Repeat

Particle filter idea

- Approximate a PDF representing a continuous random variable by a set of N 'particles'
- Each particle represents a possible value of the state (i.e. each particle is a 3D vector representing a 2D robot pose)
- Use prediction and update steps introduced on previous slide

Problem: we cannot sample from the unknown distribution we would like to estimate

- Sample from "Proposal distribution" (q) instead
- Use weights to compensate for sampling from q

Example "proposal distribution"
(q)

Particle filter properties

Advantages:

- Hard-to-compute integrals turn into summations over N particles
- Particles can be distributed over map in any form \rightarrow flexibility in 'shape' of PDF
- Prediction and measurement models have minimal restrictions (e.g. noise can be non-Gaussian, models van be non-linear)

Disadvantages:

- Computational load proportional to number of particles N
- Number of required particles scales poorly with dimension of state (which is 3 in our case)

Particle filtering: representing the
 PDF by a set of weighted points

- $p\left(x_{0: t} \mid z_{0: t}\right) \approx \sum_{i=1}^{N_{S}} w_{t}^{i} \delta\left(x_{0: t}-x_{0: t}^{i}\right)=\hat{p}\left(x_{0: t} \mid z_{0: t}\right)$
weight coordinates

uniform set of points
- $\delta(x)= \begin{cases}0 & x \neq 0 \\ \infty & x=0\end{cases}$
- $\int \delta(x) d x=1$
- $w_{t}^{i} \propto \frac{p\left(x_{t}^{i}\right)}{q\left(x_{t}^{i}\right)} \leqslant$ the weight compensates for the proposal density
- $\sum_{i=1}^{N_{s}} w_{t}^{i}=1$

Initializing a particle filter for robot localization

We have assumed an initial guess is available

- Sample N particles from the initial guess
(e.g., a uniform distribution over a part of the map)
- Set all particle weights w_{i} to $1 / N$
gaussian set of points with (uniform) weights around the expected initial position (0,0)

Prediction step

- Move each of the particles according to our model: $f\left(x_{i}, u, v\right)$
- x_{i} : each of the particle states
- u: control input that might be available (same for all particles)
- v : independent noise sample (different for each particle) \rightarrow 'diversifies' particles
- Values weights do not change

Points representing initial distribution moved using the stochastic propagation model.

Predictions only - what about measurements?

- We can keep repeating this prediction step
- Our estimate will diverge
- How do we incorporate measurements?

Incorporate sensor data by weighing with Bayes' rule

- Use predicted density as a proposal density
- Update particle weights using Bayes' rule (do not change particle locations):

$$
w_{t}=\frac{1}{c} p\left(z_{t} \mid x_{t}^{i}\right) w_{t-1}, \text { where } c \text { is a normalizing constant }
$$

Points representing initial distribution moved using the stochastic propagation model

Resampling

After a few time steps, all but one particle will have a weight of 0

- Resample (with replacement) each particle using its weight as a probability of being chosen
- low-weight particles disappear, high-weight particles are duplicated
- Reset the weight to $1 / \mathrm{N}$

Points representing initial distribution moved using the stochastic propagation model

Multinomial resampling - implementation

Example with 5 particles

Sample from a uniform distribution $\mathrm{U}(0,1) \rightarrow N_{s}=$ five times

- Sample between 0 and $0.1 \rightarrow$ duplicate particle one
- Sample between 0.1 and $0.3 \rightarrow$ duplicate particle two
- Sample between 0.3 and $0.8 \rightarrow$ duplicate particle three

Pseudocode

For more detailed information see:

Elfring, J.; Torta, E.; van de Molengraft, R. Particle Filters: A Hands-On Tutorial. Sensors 2021, 21, 438. https://doi.org/10.3390/s21020438
F. Gustafsson, "Particle filter theory and practice with positioning applications," in IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53-82, July 2010, doi: 10.1109/MAES.2010.5546308

Particle filter: example animation

- Note how the weighing and resampling steps aren't explicitly visualized here.
- Only the result the prediction is shown
- Uniform weights
- Rotation is also part of each sample
- (samples are a random state of x, y, theta)
- Next: how to compute $p\left(z_{t} \mid x_{t}\right)$

Time for a break!

After the break:

- How to calculate $p\left(z_{t} \mid x_{t}\right)$
- How to initialize a particle filter
- Obtaining a pose from the particle filter

uniform set of points

uniform set of points weighed according to Gaussian distribution

TU/e

Welcome back!

To discuss:

- How to calculate $p\left(z_{t} \mid x_{t}\right)$
- How to initialize a particle filter
- Obtaining a pose from the particle filter

Recursive State Estimation Beam-based model

For now, let's define a measurement as a vector of ranges:

- $z_{k}=\left[\begin{array}{c}\left(r_{0}, \theta_{0}\right) \\ \left(r_{1}, \theta_{1}\right) \\ \vdots \\ \left(r_{2}, \theta_{2}\right)\end{array}\right]$,
- Given a map, a robot pose, and appropriate algorithms we can generate a prediction of this measurement should be
$z_{k}^{*}=\left[\begin{array}{c}\left(r_{0}^{*}, \theta_{0}\right) \\ \left(r_{1}^{*}, \theta_{1}\right) \\ \vdots \\ \left(r_{2}^{*}, \theta_{2}\right)\end{array}\right]$

Recursive State Estimation Beam-based model

Appropriate algorithms?

A family of algorithms called Ray casters.
Don't worry about them for now, we have provided you with one for the assignment :)

Recursive State Estimation Beam-based model

Observe that we now have a measurement and a measurement prediction in the ideal (modeled) case.

Core Idea:

The mismatch between the two tell us something about whether the robot pose is correct.

Recursive State Estimation Beam-based model

How to quantify this mismatch as a probability $p\left(z_{t} \mid x_{t}\right)$?

- For a single ray, we identify four sources of "disturbances"

1. Local measurement noise
2. Unexpected obstacles (object not present in the map)
3. Failures (Glass, Black obstacles)
4. Random measurements

- We assign each source a distribution and probability of occurring

Recursive State Estimation - beam-based model

Local Measurement Noise

$$
p_{\text {short }}\left(z_{t}^{k} \mid x_{t}, m\right)=\left\{\begin{array}{cc}
\eta \mathcal{N}\left(z_{t}^{k} ; z_{t}^{k *}, \sigma_{\text {hit }}^{2}\right) & \text { if } 0 \leq z_{t}^{k} \leq z_{\max } \\
0 & \text { otherwise }
\end{array}\right.
$$

Evaluating a Gaussian does not guarantee $p_{\text {short }}$ is between 0 and 1 , which is why a normalizer is needed:

$$
\eta=\left(\int_{0}^{z_{\max }} \mathcal{N}\left(z_{t}^{k} ; z_{t}^{k *}, \sigma_{h i t}^{2}\right) d z_{t}^{k}\right)^{-1}
$$

z_{t}^{k} : measured range $z_{t}^{k *}$: true range
$\sigma_{h i t}$: std. dev. measurement noise $\mathcal{N}\left(x ; \mu, \sigma_{h i t}^{2}\right)$: evaluate Gaussian with mean μ and standard deviation σ at x

Recursive State Estimation - beam-based model

Could be that the robot measures unexpected obstacles (measure nearby objects not in the map). Modeled via exponential distribution.
(b) Exponential distribution $p_{\text {short }}$

Recursive State Estimation - beam-based model

Well-known measurement failures happen on black or non-reflective objects or glass. In that case typically, a max range measurement is returned.

$$
p_{\max }\left(z_{t}^{k} \mid x_{t}, m\right)= \begin{cases}1 & z_{k}^{t}=z_{\max } \\ 0 & \text { otherwise }\end{cases}
$$

(c) Uniform distribution $p_{\max }$

$$
\mid p\left(z_{t}^{k} \mid x_{t}, m\right)
$$

Recursive State Estimation - beam-based model

Random measurements that are entirely unexplained may occur (although not frequently):

$$
p_{\text {rand }}\left(z_{t}^{k} \mid x_{t}, m\right)=\left\{\begin{array}{cc}
\frac{1}{z_{\max }} & \text { if } 0 \leq z_{k}^{t}<z_{\max } \\
0 & \text { otherwise }
\end{array}\right.
$$

(d) Uniform distribution $p_{\text {rand }}$

Recursive State Estimation - beam-based model

Taking the weighted average of these distributions yields the overall model:

$$
\begin{aligned}
p\left(z_{t}^{k} \mid x_{t}, m\right)= & z_{\text {hit }} p_{\text {hit }}\left(z_{t}^{k} \mid x_{t}, m\right)+z_{\text {short }} p_{\text {short }}\left(z_{t}^{k} \mid x_{t}, m\right)+ \\
& z_{\max } p_{\max }\left(z_{t}^{k} \mid x_{t}, m\right)+z_{\text {rand }} p_{\text {rand }}\left(z_{t}^{k} \mid x_{t}, m\right)
\end{aligned}
$$

Recursive State Estimation - beam-based model

Probability of entire measurement vector by assuming independence of rays.

```
1: Algorithm beam_range_finder_model(z}\mp@subsup{z}{t}{},\mp@subsup{x}{t}{},m)
    q=1
    for }k=1\mathrm{ to }K\mathrm{ do
        compute }\mp@subsup{z}{t}{k*}\mathrm{ for the measurement }\mp@subsup{z}{t}{k}\mathrm{ using ray casting
        p=\mp@subsup{z}{\mathrm{ hit }}{}\cdot\mp@subsup{p}{\mathrm{ hit }}{}(\mp@subsup{z}{t}{k}|\mp@subsup{x}{t}{},m)+\mp@subsup{z}{\mathrm{ short }}{}\cdot\mp@subsup{p}{\mathrm{ short }}{}(\mp@subsup{z}{t}{k}|\mp@subsup{x}{t}{},m)
            + zmax }\cdot\mp@subsup{p}{\mathrm{ max }}{}(\mp@subsup{z}{t}{k}|\mp@subsup{x}{t}{},m)+\mp@subsup{z}{\mathrm{ rand }}{}\cdot\mp@subsup{p}{\mathrm{ rand }}{}(\mp@subsup{z}{t}{k}|\mp@subsup{x}{t}{},m
        q=q\cdotp
    returnq
```

- Does this assumption really hold true?

Particle filter: example animation

- Sensor data not explicitly shown in this animation
- Particles are resampled based on the sensor model

Estimating the pose from a particle filter

Remember:

- $p\left(x_{0: t} \mid z_{0: t}\right) \approx \sum_{i=1}^{N_{s}} w_{t}^{i} \delta\left(x_{0: k}-x_{0: k}^{i}\right)$
- $E\left(x_{t}\right) \approx \sum_{i=1}^{N} w_{t}^{i} x_{0: t}^{i}$
- Is this a good pose estimate to use?
- When is it, when is it not?

uniform set of points

uniform set of points weighed according to Gaussian distribution

Initializing a particle filter

- Decide on the number of particles N
- Draw N particles from the initial distribution
- Run consecutive update/prediction steps!

This week's exercise

- Particle filter predictions
- Generate new samples from the proposal distribution $p\left(x_{t+1} \mid x_{t}\right)$
- Skip Bayes' update
- What happens to the prediction over time?
- What would be the benefit of adding measurement updates?

Next week's exercise

- Measurement data updates!
- Update the weight of our particles using Bayes' rule.
- Close the loop by resampling the particles.
- Fully functioning particle filter!

