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Recursive State Estimation 
Recap
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Prior estimate
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Measurements



Recursive State Estimation
Recap
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Our belief of the current state:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 ≔ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡−1)

Control (dead-reckoning) update:

𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡) = �𝑝𝑝 𝑥𝑥𝑡𝑡 𝑢𝑢𝑡𝑡,𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 𝑑𝑑𝑥𝑥𝑡𝑡−1

Measurement update:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡)



Recursive State Estimation
Recap
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Recursive State Estimation
Recap
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However: 
• The Bayes filter is generally intractable 

We need to approximate



Goal of this Lecture

How do we represent our World?

What do we mean by “measurements”?

How do we solve the Localization
Problem using a Particle Filtering approach?
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Our World Representation



Map Representation

Occupancy Grid Maps

• Grid Map -> The world is discretized in a large amount of cells
• Occupancy -> Each cell is either occupied or free
• Often assumed to be static

• Note that large environments may require a large amount of cells

• No representation for higher level features, e.g. doors
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http://ais.informatik.uni-
freiburg.de/teaching/ws22/mapping/

http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/
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The Measurement Model



Recursive State Estimation
Measurements

Department of Mechanical Engineering – Control Systems Technology 12

So far we’ve seen:

But what is 𝑧𝑧𝑡𝑡 and how do we express 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡)?

Measurement update:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡)



Recursive State Estimation
Beam-based model 

For now, let’s define a measurement as a vector of ranges:

• 𝑧𝑧𝑘𝑘 =

(𝑟𝑟0,𝜃𝜃0)
(𝑟𝑟1,𝜃𝜃1)

⋮
(𝑟𝑟2,𝜃𝜃2)

,

• Given a map, a robot pose, and appropriate algorithms we can 
generate a prediction of this measurement

• 𝑧𝑧𝑘𝑘∗ =

(𝑟𝑟0∗,𝜃𝜃0)
(𝑟𝑟1∗,𝜃𝜃1)

⋮
(𝑟𝑟2∗,𝜃𝜃2)
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Recursive State Estimation
Beam-based model 

Appropriate algorithms?

A family of algorithms called Ray casters.

Don’t worry about them for now,
we have provided you with one for the assignment.
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Recursive State Estimation
Beam-based model 
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Observe that we now have a measurement and a measurement 
prediction in the ideal (modeled) case.

Core Idea:
The mismatch between the two tell us something about whether 

the robot pose is correct.



Recursive State Estimation
Beam-based model 
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How to quantify this
mismatch as a probability 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 ?

• For a single ray, we identify four sources of “disturbances”
• Local Measurement noise
• Unexpected Obstacles
• Failures (Glass, Black obstacles)
• Random measurements

• We assign each source a distribution and probability of occurring



Recursive State Estimation
Beam-based model 
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Local Measurement Noise

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡,𝑚𝑚) = � 𝜂𝜂 𝒩𝒩(𝑧𝑧𝑡𝑡𝑘𝑘; 𝑧𝑧𝑡𝑡𝑘𝑘∗,𝜎𝜎ℎ𝑖𝑖𝑖𝑖2 ) 𝑖𝑖𝑖𝑖 0 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝒩𝒩 𝑧𝑧𝑡𝑡𝑘𝑘; 𝑧𝑧𝑡𝑡𝑘𝑘∗,𝜎𝜎ℎ𝑖𝑖𝑖𝑖2 =
1

2𝜋𝜋𝜎𝜎ℎ𝑖𝑖𝑖𝑖2
𝑒𝑒
−12

(𝑧𝑧𝑡𝑡
𝑘𝑘−𝑧𝑧𝑡𝑡

𝑘𝑘∗)2

𝜎𝜎ℎ𝑖𝑖𝑖𝑖
2

𝜂𝜂 = �
0

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
𝒩𝒩 𝑧𝑧𝑡𝑡𝑘𝑘; 𝑧𝑧𝑡𝑡𝑘𝑘∗,𝜎𝜎ℎ𝑖𝑖𝑖𝑖2 𝑑𝑑𝑧𝑧𝑡𝑡𝑘𝑘

−1



Recursive State Estimation
Beam-based model 
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Unexpected Obstacles

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡,𝑚𝑚) = � 𝜂𝜂𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧𝑡𝑡
𝑘𝑘 𝑖𝑖𝑖𝑖 0 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘∗

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝜂𝜂 =
1

1 − 𝑒𝑒−𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧𝑡𝑡𝑘𝑘∗



Recursive State Estimation
Beam-based model 
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Failures (Glass, Black obstacles)

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 = �1 𝑧𝑧𝑘𝑘𝑡𝑡 = 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Recursive State Estimation
Beam-based model 
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Random measurements

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 = �
1

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 0 ≤ 𝑧𝑧𝑘𝑘𝑡𝑡 < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Recursive State Estimation
Beam-based model 
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Taking the weighted average of these distributions yields:

𝑝𝑝 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 = 𝑧𝑧ℎ𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑖𝑖𝑖𝑖 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 + 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 +
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚 + 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚



Recursive State Estimation
Beam-based model 
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Probability of entire measurement vector by assuming independence of rays.
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The Particle Filter Algorithm



From Bayes Filter to Particle Filter
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Intractable, 
since we do 

not have 
explicit 

formulas for 
the 

distribution

What if we discretize 
(“grid”) the state space?



From Bayes Filter to Particle Filter
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Do we need 
to keep track 

of and 
compute 

these Areas?

What if we only 
compute probabilities 
of regions in which we 

are likely to be?



From Bayes Filter to Particle Filter
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Distribution 
is sampled 
randomly.

Opportunity 
to place 
samples 

where they 
are “useful”.



Particle Filter (Monte Carlo Localization)
How?
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Particle Filter (Monte Carlo Localization)
How?
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What we have discussed 
so far



Particle Filter (Monte Carlo Localization)
How?
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Update the m-th particle using the control model



Particle Filter (Monte Carlo Localization)
How?
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Set the weight of the updated particle using the 
measurement model



Particle Filter (Monte Carlo Localization)
How?
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Resampling: Makes sure that 
particles stay focused in high 

likelihood areas

You will see two methods in the 
Assignment

Elfring, J.; Torta, E.; van de 
Molengraft, R. Particle Filters: A 
Hands-On 
Tutorial. Sensors 2021, 21, 438. 
https://doi.org/10.3390/s21020438
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Now it’s your turn

Recommended to use Probabilistic Robotics as a reference
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