Lecture: Localisation 2 Particle Filtering 101

MOBILE ROBOT CONTROL 2023

Koen de Vos

Department of Mechanical Engineering – Control Systems Technology

Recursive State-Estimation

Recap

Recursive State-Estimation

Our belief of the current state:

 $bel(x_t) \coloneqq p(x_t | z_{1:t-1}, u_{1:t-1})$

Measurement update:

$$bel(x_t) = p(z_t|x_t)\overline{bel}(x_t)$$

Control (dead-reckoning) update:

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

TU/e

However:

• The Bayes filter is generally intractable

We need to approximate

Goal of this Lecture

How do we represent our World?

What do we mean by "measurements"?

How do we solve the Localization Problem using a Particle Filtering approach?

Our World Representation

Map Representation

Occupancy Grid Maps

- Grid Map -> The world is discretized in a large amount of cells
- Occupancy -> Each cell is either occupied or free
- Often assumed to be static
- Note that large environments may require a large amount of cells
- No representation for higher level features, e.g. doors

http://ais.informatik.unifreiburg.de/teaching/ws22/mapping/

The Measurement Model

Recursive State Estimation Measurements

TU

0

So far we've seen:

Measurement update:

 $bel(x_t) = p(z_t|x_t)\overline{bel}(x_t)$

But what is z_t and how do we express $p(z_t|x_t)$?

For now, let's define a measurement as a vector of ranges:

• $z_k = \begin{bmatrix} (r_0, \theta_0) \\ (r_1, \theta_1) \\ \vdots \\ (r_2, \theta_2) \end{bmatrix}$,

• Given a map, a robot pose, and *appropriate algorithms* we can generate a prediction of this measurement

•
$$z_k^* = \begin{bmatrix} (r_0^*, \theta_0) \\ (r_1^*, \theta_1) \\ \vdots \\ (r_2^*, \theta_2) \end{bmatrix}$$

Appropriate algorithms?

A family of algorithms called Ray casters.

Don't worry about them for now, we have provided you with one for the assignment.

15

TU/e

Observe that we now have a measurement and a measurement prediction in the ideal (modeled) case.

Core Idea:

The mismatch between the two tell us something about whether the robot pose is correct.

How to quantify this mismatch as a probability $p(z_t|x_t)$?

- For a single ray, we identify four sources of "disturbances"
 - Local Measurement noise
 - Unexpected Obstacles
 - Failures (Glass, Black obstacles)
 - Random measurements
- We assign each source a distribution and probability of occurring

Local Measurement Noise

Unexpected Obstacles

$$p_{short}(z_t^k | x_t, m) = \begin{cases} \eta \lambda_{short} e^{-\lambda_{short} z_t^k} & \text{if } 0 \le z_t^k \le z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$$
$$\eta = \frac{1}{1 - e^{-\lambda_{short} z_t^{k*}}}$$

Failures (Glass, Black obstacles)

$$p_{max}(z_t^k | x_t, m) = \begin{cases} 1 & z_k^t = z_{max} \\ 0 & otherwise \end{cases}$$

Random measurements

$$p_{rand}(z_t^k | x_t, m) = \begin{cases} \frac{1}{z_{max}} & \text{if } 0 \le z_k^t < z_{max} \\ 0 & \text{otherwise} \end{cases}$$

Taking the weighted average of these distributions yields:

$$p(z_t^k | x_t, m) = \underline{z_{hit}} p_{hit} (z_t^k | x_t, m) + \underline{z_{short}} p_{short} (z_t^k | x_t, m) + \\ \underline{z_{max}} p_{max} (z_t^k | x_t, m) + \underline{z_{rand}} p_{rand} (z_t^k | x_t, m)$$

Probability of entire measurement vector by assuming independence of rays.

```
Algorithm beam_range_finder_model(z_t, x_t, m):
1:
                 q = 1
2:
                 for k = 1 to K do
 3:
                      compute z_t^{k*} for the measurement z_t^k using ray casting
 4:
                      p = z_{\text{hit}} \cdot p_{\text{hit}}(z_t^k \mid x_t, m) + z_{\text{short}} \cdot p_{\text{short}}(z_t^k \mid x_t, m)
 5:
                            +z_{\max} \cdot p_{\max}(z_t^k \mid x_t, m) + z_{rand} \cdot p_{rand}(z_t^k \mid x_t, m)
 6:
 7:
                      q = q \cdot p
 8:
                 return q
```


The Particle Filter Algorithm

From Bayes Filter to Particle Filter

From Bayes Filter to Particle Filter

From Bayes Filter to Particle Filter


```
Algorithm Particle_filter(X_{t-1}, u_t, z_t):
1:
                    \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                    for m = 1 to M do
3:
                         sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
w_t^{[m]} = p(z_t \mid x_t^{[m]})
4:
5:
                         \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                     endfor
                    for m = 1 to M do
8:
                           draw i with probability \propto w_t^{[i]}
9:
                           add x_t^{[i]} to \mathcal{X}_t
10:
11:
                     endfor
12:
                     return \mathcal{X}_t
```

1:	Algorithm Particle_filter(X_{t-1}, u_t, z_t):	
2:	$ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$	
3:	for $m = 1$ to M do	
4:	sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$	What we have discussed
5:	$w_t^{[m]} = p(z_t \mid x_t^{[m]})$	so far
6:	$ar{\mathcal{X}}_t = ar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} angle$	
7:	endfor	
8:	for $m = 1$ to M do	
9:	draw i with probability $\propto w_t^{[i]}$	
10:	add $x_t^{[i]}$ to \mathcal{X}_t	
11:	endfor	
12:	return \mathcal{X}_t	

1:	Algorithm Particle_filter(X_{t-1}, u_t, z_t):	
2:	$ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$	
3:	for $m = 1$ to M do	
4:	sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$	Update the m-th particle using the control model
5:	$w_t^{[m]} = p(z_t \mid x_t^{[m]})$	
6:	$ar{\mathcal{X}}_t = ar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} angle$	
7:	endfor	
8:	for $m = 1$ to M do	
9:	draw i with probability $\propto w_t^{[i]}$	
10:	add $x_t^{[i]}$ to \mathcal{X}_t	
11:	endfor	
12:	return \mathcal{X}_t	
L		

	1:	Algorithm Particle_filter(χ_{t-1}, u_t, z_t):
	2:	$\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$
	3:	for $m = 1$ to M do
	4:	sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$
	5:	$w_t^{[m]} = p(z_t \mid x_t^{[m]})$
ľ	6:	$ar{\mathcal{X}}_t = ar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} angle$
	7:	endfor
	8:	for $m = 1$ to M do
	9:	draw i with probability $\propto w_t^{[i]}$
	10:	add $x_t^{[i]}$ to \mathcal{X}_t
	11:	endfor
	12:	return \mathcal{X}_t

Set the weight of the updated particle using the measurement model

Recommended to use Probabilistic Robotics as a reference

