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Recursive State-Estimation
Recap

Odometry information
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Recursive State-Estimation
Recap

Measurements

Odometry information
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Recap

(5
Recursive State Estimation - Kfﬁ - @

Our belief of the current state:
bel(x;) = p(x¢|Z1.4—1, Us.t—1)

Measurement update: L
bel(x;) = p(z¢|xc)bel(x;)

Control (dead-reckoning) update:

bel(x,) = jp(xtlut;xt—l) bel(x¢—1) dxe—4
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Recap
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Recursive State Estimation - Kﬂ - @

However:
* The Bayes filter is generally intractable

We need to approximate
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Lecture Localisation 2

Goal of this Lecture

How do we represent our World?
What do we mean by “measurements”?

How do we solve the Localization
Problem using a Particle Filtering approach?
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Our World Representation
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)
Map Representation O ..\/C\ @p @

Occupancy Grid Maps

Grid Map -> The world is discretized in a large amount of cells

*  Occupancy -> Each cell is either occupied or free
»  Often assumed to be static occupied < free
space space
* Note that large environments may require a large amount of cells
http://ais.informatik.uni-
* No representation for higher level features, e.g. doors freiburg.de/teaching/ws22/mapping/
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http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/

The Measurement Model
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Recursive State Estimation

Measurements ./U @
(=)

So far we’ve seen:

Measurement update: -
bel(x;) = p(z¢|x)bel(x,)

But what is z; and how do we express p(z;|x;)?
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Recursive State Estimation
Beam-based model

For now, let’s define a measurement as a vector of ranges:

(10, 60)
. 7z, = (7”1,:91),

(7 ,'92)

« Given a map, a robot pose, and appropriate algorithms we can
generate a prediction of this measurement

(10, 60)
(r{,61)

(7"2*, 02)

.z} =
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Recursive State Estimation
Beam-based model

Appropriate algorithms?
A family of algorithms called Ray casters.

Don’t worry about them for now,

we have provided you with one for the assignment.
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Recursive State Estimation
Beam-based model

Observe that we now have a measurement and a measurement
prediction in the ideal (modeled) case.

Core Idea:

The mismatch between the two tell us something about whether
the robot pose is correct.
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Recursive State Estimation
Beam-based model

How to quantify this
mismatch as a probability »(z|x.)?

« For a single ray, we identify four sources of “disturbances”
Local Measurement noise
Unexpected Obstacles
Failures (Glass, Black obstacles)
Random measurements

« We assign each source a distribution and probability of occurring
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Recursive State Estimation

Beam-based model ./U @
(%)

Local Measurement Noise

] k (a) Gaussian distribution py;
pShOTt(Zéclxt:m) = n N(Zt ’Zt ’O-hlt) lf 0< Z < Zmax Phit
0 otherwise .
plzf | o, m)
1 l(Zt _Zt )2
2
N(Zt ’Zt 'O-I'%it) = —34e o-hlt
2
/2710,”-,:
Zmax ) . -1
n - N(Zt ’ Zt ’ O-hit)dzt Zrl‘[c* Zmax
0
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Recursive State Estimation

Beam-based model ./U @
(%)

Unexpected Obstacles

(b) Exponential distribution pgjort

-1 s ; k ko
k _ A e~ “'short %t if0<z <z .
pshort(zt |xt' m) = n shorto ft:“h 't t p(zF | z,,m)
otnerwise
1
n= ;
1 — e~ Ashort Zé(
zfa Zmax
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Recursive State Estimation
Beam-based model

Failures (Glass, Black obstacles)

t
k _ )1 Zr = Zymax
pmax Zt xt’m - o
( | ) 0 otherwise
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Recursive State Estimation
Beam-based model

Random measurements

if 0 <z} <Znux

prand(zﬂxtr m) =~ YZmax
0 otherwise
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(d) Uniform distribution prand

p(zF | z¢,m)

K=

Zy Zmax
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Recursive State Estimation
Beam-based model

Taking the weighted average of these distributions yields:

p(z|xe,m) = Znie Prie (28 |Xe,m) + ZonortPsnore (28 X0, m) +
Zmaxpmax(zﬂxt' m) + ZrandPrand (Zﬂxt: m)
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Recursive State Estimation - 7 . @
Beam-based model

Probability of entire measurement vector by assuming independence of rays.

—
(1 Algorithm beam_range_finder_model(z;, z;, m):
2 g=1
3: fork=1toK do
[ 4: compute z}* for the measurement z; using ray casting
5“ P = Zhit * Phit r:(h ! It, Tn':} + Zshort * Pshort (::L ‘ &Iy, 7”,‘-’
6: T Zmax "pmax(:fk ' "EE‘T”.‘-I + Zrand 'jf"raud[:-':( | Tt m'}
7 g=q-p
18 return g
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The Particle Filter Algorithm
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From Bayes Filter to Particle Filter

iSRs ey ""-""'""""l
: Intractable, :
| sincewedo |
= I nothave !
A 1 explicit |
1 |
. 1 formulas for 1
I I
“ el 1 the !
: distribution
SR
' What if we discretize
“ = (“grid”) the state space?
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From Bayes Filter to Particle Filter

25

ib)

i)

(b)

||||||||||| E\I\\I i
Imm
........... ﬁ‘.u. i
“pulxl
A A A
- ey
o | anll =1

Do we need
to keep track
of and
compute
these Areas? |
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What if we only
compute probabilities
of regions in which we

are likely to be?
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From Bayes Filter to Particle Filter
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Distribution
is sampled
randomly.

Opportunity

to place

samples
where they
are “useful”.
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Particle Filter (Monte Carlo Localization)
How?

1 Algorithm Particle_filter(X,_,, u;, z):
2 X=X =10

3 form=1toM do

4 sample 2™~ p(zy | Uzl"‘;:)
5 ™ = pla | 2)")

6 B= 2+ @ ™)

7 endfor

8 form =1to M do

9: draw i with probability o w}f
10: add m[;ﬂ to &}

11: endfor

12: return X,

]
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Particle Filter (Monte Carlo Localization)
How?

Algorithm Particle_filter(X,_,, u;, z,):
X=X =1
form=1toM do

[m] [m

1

2

3 1

4: sample z, " ~ p(z: | U, Ty ) What we have discussed
5 il
6

7

8

9

o™ (| ) ofar
X=F+ @ wlm
endfor
form=1toM do
: draw i with probability o w}f}
10: add z!" to ,
11: endfor
12: return X,
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Particle Filter (Monte Carlo Localization)
How?

Algorithm Particle_filter(X;_;, u;, z,):
Xy=X=10
form =1to M do
sample mim] ~plzy | uf_,:ci"f}]) Update the m-th particle using the control model
W= e )
X, =X + (mgm'],wim])
endfor
form=1toM do
draw i with probability oc w
add :ri';] to X,
endfor
return X,
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Particle Filter (Monte Carlo Localization)

How?

Algorithm Particle_filter(X;_;, u;, z,):
X=X=10
form=1toM do

sample mlfm]

o | m]
~p(my | ug, 1)

‘wim] = plz [xlsm])

RS S A IS 1R [l i

[ WY
_

oy
M

Xy = A+ (:I:imi:wim})

endfor

form=1toM do
draw i with probability o w}f]
add :ri';] to X,

endfor

return &;
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Set the weight of the updated particle using the

measurement model
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Particle Filter (Monte Carlo Localization)

How?

Algorithm Particle_filter(X,_,, u;, 2):

rft:/.‘lff:w
form=1toM do

[m] (. | [m]
samplez; ' ~ p(zy | u, 2,_7)

ol = pla )
X=X+ @ wl™)

endfor

form=1toM do
draw i with probability w}f}
add " to X,

endfor
return X,
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Elfring, J.; Torta, E.; van de
Molengraft, R. Particle Filters: A
Hands-On

Tutorial. Sensors 2021, 21, 438.
https://doi.org/10.3390/s21020438

Resampling: Makes sure that
particles stay focused in high
likelihood areas

You will see two methods in the
Assignment
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Now it’s your turn
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Recommended to use Probabilistic Robotics as a reference
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