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How does our Robot know where it is?
(and why does it need to know it?)
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Let’s step in our time machine

Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.
All you have is:

* a Compass,

* aMap,

¢ aClock,

* the Sun to estimate your longitude at Noon,
* the stars to estimate your Latitude,

* arough estimate of your velocity

How do we know where we are and how do we get to our destination?
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Let’s step in our time machine

Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.
All you have is:

* a Compass,

* aMap,

¢ aClock,

* the Sun to estimate your longitude at Noon,
* the stars to estimate your Latitude,

* an estimate of your velocity

How do we know where we are and how do we get to our destination?
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Let’s step in our time machine

Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.

We could:
* Estimate our latitude at night
* Estimate our longitude at noon

* Keep updating our position given our velocity, time and our heading

* What can we say about its accuracy.

* How much accuracy do we need?
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Why is this relevant to Robotics?

Our robot is not a ship, right?
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Why is this relevant to Robotics?

Our robots also deal with partial and imperfect
information.

We don’t have an absolute position sensor
But we do have multiple sources of information we
can use to infer our location
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Goal of this Lecture

Why do we need, and what is, Robot Localization?

How do we solve the Localization
Problem using a dead-reckoning approach?
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The Localization Problem
__lirzg T
- . v r’

» . -

9 Lecture Localistaion 1




Different types of Localization problems

* For instance, depending on your Prior Information or

Enviroment o =
* Position Tracking '

* Global Localization

(b) 1Y

+  Kidnapped Robot Problem iF;i‘lﬂJf e
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Different types of Localization problems

* For instance, depending on your Prior Information or
Enviroment
* Static Enviroment

* Dynamic Enviroment

* Semi-Dynamic Enviroment

O%Y.. @O O

Hendrikx, R. W. M. (2023). Object and Pattern Association for
Robot Localization. [Phd Thesis 1 (Research TU/e /

Graduation TU/e), Mechanical Engineering]. Eindhoven
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Large Variety of Approaches

* Your approach to solving the problem may vary
depending on

Your enviroment

The type of problem you are solving

The available sensor modalities and their reliability
Your computational resources

The availability of a map

Today we are focusing on dead-reckoning
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Dead-Reckoning



Dead-reckoning
Idea
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Dead-reckoning
Idea

Prior estimate

1

[y ——
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Odometry information
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Dead-reckoning
Coordinate-Frames @
* We, most likely, have information in different coordinate frames base_stabilized
* Odometry in odometry-frame base.link
* Prior estimate (ang goal) in map-frame \ 5 it
* Measurement both translated and rotated w.r.t eachother ' %
e How do we convert between them? ‘[ T 1
map g (;dom= base_footp:nt

GIANNI A. DI CARO 16-311-Q INTRODUCTION TO ROBOTICS
LAB NOTES: ODOMETRY, ROS REFERENCE FRAMES

Odometry Dead
Dnift Reckoning

Imap_frame /base_frame

GIANNI A. DI CARO 16-311-Q INTRODUCTION TO ROBOTICS LAB NOTES: ODOMETRY, ROS REFERENCE FRAMES
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Dead-reckoning ‘/\d
Coordinate-Frames @
* Homogenous transformations!
* Forinstance, we have the 2D homogenous transformation between robot and map frame

cosf —sinf x;
T3 = [R T] =|sinf cosfO y;
01 0 0 1

e Then

Xo __ mo XR
[7]=7¢ [7]
For further details, or a recap:
e http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/ -> Homogenous Coordinates
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http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/
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Coordinate-Frames @

* And
1 _p-1 cosf@ sinf —cosfx,—sinby,
T =T = [RO Rl T] =|—sinf cosf sinOx,—cosb y;
0 0 1

*  For further details, or a recap:
* http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/ -> Homogenous Coordinates
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http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/

Dead-reckoning

How? @

Given a prior estimate (in map frame)

While true:
odom_update € new odom message
Transform odom_update into map frame
Add the odometry update to your prior estimate
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What do we expect?

How does it perform given imperfect
information?
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Dead-reckoning

Typical Results
(a)

Figure 8.10 (a) Odometry information and (b) corrected path of the robot.

From: Thrun, Sebastian. "Probabilistic robotics." Communications
of the ACM 45.3 (2002): 52-57.
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Can we do better?
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We have more than one source of Information!
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A First Look at
Recursive State Estimation
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Recursive State-Estimation
Idea

Odometry information
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Recursive State-Estimation
Idea

Measurements

Odometry information
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Recursive State Estimation

Probabilistic approach - ‘/U - @
(=)

Core idea:

« Combine the uncertain information to obtain a more certain view,
 Incorporate measurements over multiple time steps.

- Bayes Filter
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Recursive State Estimation
Probabilistic approach

(a)

Our belief of the current state:
bel(x;) = p(x¢|Z1.4—1, Us.t—1)
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Recursive State Estimation
Probabilistic approach

Our belief of the current state: (a)
bel(x;) = p(x¢|Z1.4—1, Us.t—1)

b)

Measurement update: -
bel(x¢y1) = p(z¢|xe)bel (x;)
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Recursive State Estimation
Probabilistic approach

ibj

Our belief of the current state:
bel(x;) = p(x¢|Z1.4—1, Us.t—1)

plzx)

Measurement update:

bel(x;) = P(Zt|xt)m(xt) 9

Control (dead-reckoning) update:

bel(x,) = jp(xtlut;xt—l) bel(x¢—1) dxe—4
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Recursive State Estimation
Probabilistic approach

However: @
* The Bayes filter is generally intractable
*  We cannot compute a solution in real time

* Next week:
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» The particle filter, state-of-practice approximation of the Bayes Filter
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Take-Home Message
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Localization is an integral part of the robot
navigation problem

Dead-reckoning is easy but has its flaws.
Using multiple sensor modalities could allow

you to achieve more accurate localization
performance
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