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How does our Robot know where it is?
(and why does it need to know it?)



Let’s step in our time machine
• Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.

• All you have is: 

• a Compass,
• a Map,
• a Clock, 
• the Sun to estimate your longitude at Noon,
• the stars to estimate your Latitude,
• a rough estimate of your velocity

How do we know where we are and how do we get to our destination?
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Let’s step in our time machine
• Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.

• All you have is: 

• a Compass,
• a Map,
• a Clock, 
• the Sun to estimate your longitude at Noon,
• the stars to estimate your Latitude,
• an estimate of your velocity

How do we know where we are and how do we get to our destination?
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Let’s step in our time machine
• Imagine: You’re on a ship, at night, on the Atlantic ocean in the 1800s.

• We could:
• Estimate our latitude at night
• Estimate our longitude at noon

• Keep updating our position given our velocity, time and our heading 

• What can we say about its accuracy.

• How much accuracy do we need?
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Why is this relevant to Robotics?

Our robot is not  a ship, right?
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Why is this relevant to Robotics?

Our robots also deal with partial and imperfect 
information.

• We don’t have an absolute position sensor 
• But we do have multiple sources of information we 

can use to infer our location
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Goal of this Lecture

Why do we need, and what is, Robot Localization?

How do we solve the Localization
Problem using a dead-reckoning approach?
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The Localization Problem



Different types of Localization problems

• For instance, depending on your Prior Information or 
Enviroment

• Position Tracking

• Global Localization

• Kidnapped Robot Problem
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Different types of Localization problems

• For instance, depending on your Prior Information or 
Enviroment

• Static Enviroment

• Dynamic Enviroment

• Semi-Dynamic Enviroment
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Hendrikx, R. W. M. (2023). Object and Pattern Association for 
Robot Localization. [Phd Thesis 1 (Research TU/e / 
Graduation TU/e), Mechanical Engineering]. Eindhoven 
University of Technology.



Large Variety of Approaches

• Your approach to solving the problem may vary 
depending on 

• Your enviroment 
• The type of problem you are solving
• The available sensor modalities and their reliability
• Your computational resources
• The availability of a map
• …..

• Today we are focusing on dead-reckoning
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Dead-Reckoning



Dead-reckoning
Idea

Department of Mechanical Engineering – Control Systems Technology 14

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑢𝑢0 𝑢𝑢1



Dead-reckoning
Idea
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𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑢𝑢0 𝑢𝑢1

Prior estimate

Odometry information



Dead-reckoning
Coordinate-Frames
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• We, most likely, have information in different coordinate frames
• Odometry in odometry-frame
• Prior estimate (ang goal) in map-frame

• Measurement both translated and rotated w.r.t eachother

• How do we convert between them?

GIANNI A. DI CARO 16-311-Q INTRODUCTION TO ROBOTICS LAB NOTES: ODOMETRY, ROS REFERENCE FRAMES

GIANNI A. DI CARO 16-311-Q INTRODUCTION TO ROBOTICS 
LAB NOTES: ODOMETRY, ROS REFERENCE FRAMES



Dead-reckoning
Coordinate-Frames
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• Homogenous transformations!
• For instance, we have the 2D homogenous transformation between robot and map frame 

𝑇𝑇𝑅𝑅𝑚𝑚 = 𝑅𝑅 𝑇𝑇
0 1 =

cos 𝜃𝜃 − sin𝜃𝜃 𝑥𝑥𝑡𝑡
sin𝜃𝜃 cos𝜃𝜃 𝑦𝑦𝑡𝑡

0 0 1

• Then 

𝑥𝑥𝑜𝑜
1 = 𝑇𝑇𝑅𝑅𝑜𝑜

𝑥𝑥𝑅𝑅
1

• For further details, or a recap:
• http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/ -> Homogenous Coordinates

http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/


Dead-reckoning
Coordinate-Frames
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• And

𝑇𝑇𝑚𝑚𝑅𝑅 = 𝑇𝑇𝑅𝑅𝑀𝑀 −1 = 𝑅𝑅−1 −𝑅𝑅−1𝑇𝑇
0 1

= −
cos 𝜃𝜃 sin𝜃𝜃 − cos𝜃𝜃 𝑥𝑥𝑡𝑡 − sin𝜃𝜃 𝑦𝑦𝑡𝑡
sin𝜃𝜃 cos𝜃𝜃 sin𝜃𝜃 𝑥𝑥𝑡𝑡 − cos𝜃𝜃 𝑦𝑦𝑡𝑡

0 0 1

• For further details, or a recap:
• http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/ -> Homogenous Coordinates

http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/


Dead-reckoning
How?
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Given a prior estimate (in map frame) 

While true:
odom_update new odom message
Transform odom_update into map frame
Add the odometry update to your prior estimate
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What do we expect?

How does it perform given imperfect 
information?



Dead-reckoning
Typical Results
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From: Thrun, Sebastian. "Probabilistic robotics." Communications 
of the ACM 45.3 (2002): 52-57.



Lecture Localistaion 122

Can we do better?
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We have more than one source of Information!
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A First Look at 
Recursive State Estimation



Recursive State-Estimation
Idea
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Prior estimate

Odometry information

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑢𝑢0 𝑢𝑢1



Recursive State-Estimation
Idea
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Prior estimate

Odometry information

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁…

𝑢𝑢0 𝑢𝑢1

�𝑧𝑧0 �𝑧𝑧1

Measurements



Recursive State Estimation
Probabilistic approach
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Core idea:
• Combine the uncertain information to obtain a more certain view,
• Incorporate measurements over multiple time steps.

 Bayes Filter



Recursive State Estimation
Probabilistic approach
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Our belief of the current state:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 ≔ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡−1)



Recursive State Estimation
Probabilistic approach
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Our belief of the current state:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 ≔ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡−1)

Measurement update:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡+1 = 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡)



Recursive State Estimation
Probabilistic approach
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Our belief of the current state:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 ≔ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡−1)

Control (dead-reckoning) update:

𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡) = �𝑝𝑝 𝑥𝑥𝑡𝑡 𝑢𝑢𝑡𝑡,𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 𝑑𝑑𝑥𝑥𝑡𝑡−1

Measurement update:
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡)



Recursive State Estimation
Probabilistic approach
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However: 
• The Bayes filter is generally intractable 
• We cannot compute a solution in real time

• Next week:
• The particle filter, state-of-practice approximation of the Bayes Filter
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Take-Home Message
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Localization is an integral part of the robot 
navigation problem

Dead-reckoning is easy but has its flaws.

Using multiple sensor modalities could allow 
you to achieve more accurate localization 

performance
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