Lecture: Localisation 1 Mathematical Basics & Dead-Reckoning

MOBILE ROBOT CONTROL 2023

Koen de Vos

Department of Mechanical Engineering – Control Systems Technology

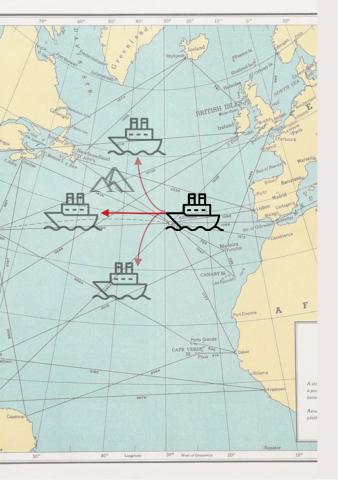
How does our Robot know where it is?

(and why does it need to know it?)

Let's step in our time machine

- Imagine: You're on a ship, at night, on the Atlantic ocean in the 1800s.
- All you have is:
 - a Compass,
 - a Map,
 - a Clock,
 - the Sun to estimate your longitude at Noon,
 - the stars to estimate your Latitude,
 - a rough estimate of your velocity

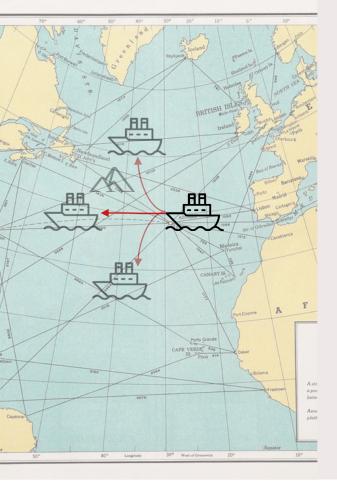
How do we know where we are and how do we get to our destination?



Let's step in our time machine

- Imagine: You're on a ship, at night, on the Atlantic ocean in the 1800s.
- All you have is:
 - a Compass,
 - a Map,
 - a Clock,
 - the Sun to estimate your longitude at Noon,
 - the stars to estimate your Latitude,
 - an estimate of your velocity

How do we know where we are and how do we get to our destination?



Let's step in our time machine

- Imagine: You're on a ship, at night, on the Atlantic ocean in the 1800s.
- We could:
 - Estimate our latitude at night
 - Estimate our longitude at noon
 - Keep updating our position given our velocity, time and our heading
 - What can we say about its accuracy.
 - How much accuracy do we need?

Why is this relevant to Robotics?

Our robot is not a ship, right?

Why is this relevant to Robotics?

Our robots also deal with partial and imperfect information.

- We don't have an absolute position sensor
- But we do have multiple sources of information we can use to infer our location

Goal of this Lecture

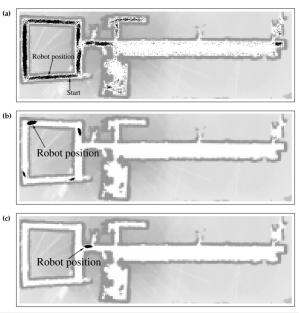
Why do we need, and what is, Robot Localization?

How do we solve the Localization Problem using a dead-reckoning approach?

The Localization Problem

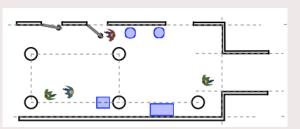
Different types of Localization problems

- For instance, depending on your Prior Information or Enviroment
 - Position Tracking
 - Global Localization
 - Kidnapped Robot Problem



Different types of Localization problems

- For instance, depending on your Prior Information or Enviroment
 - Static Enviroment
 - Dynamic Enviroment
 - Semi-Dynamic Enviroment

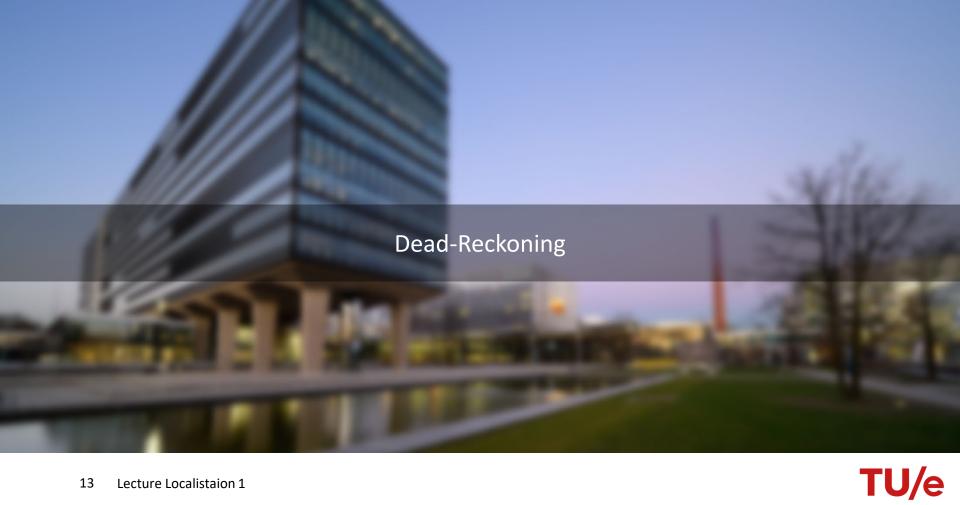


Hendrikx, R. W. M. (2023). *Object and Pattern Association for Robot Localization*. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Eindhoven University of Technology.

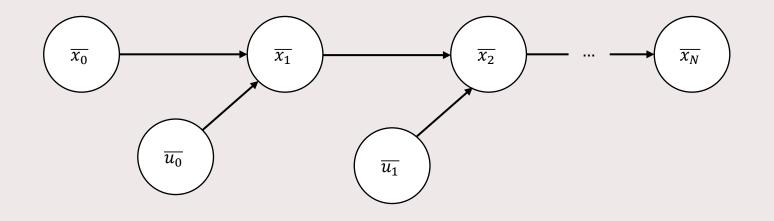
TU/e

Large Variety of Approaches

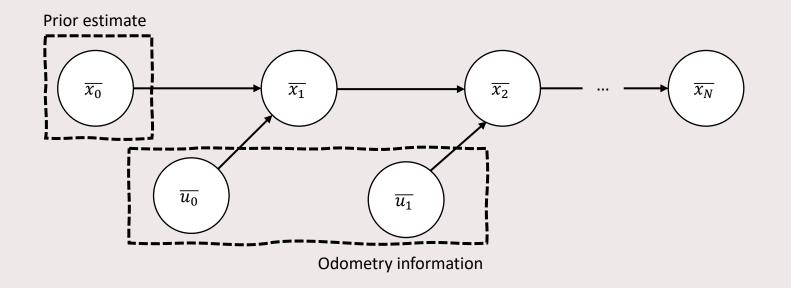
- Your approach to solving the problem may vary depending on
 - Your enviroment
 - The type of problem you are solving
 - The available sensor modalities and their reliability
 - Your computational resources
 - The availability of a map
 -
 - Today we are focusing on **dead-reckoning**

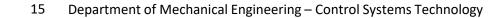


Dead-reckoning Idea



Dead-reckoning Idea





Dead-reckoning Coordinate-Frames

• We, most likely, have information in different coordinate frames

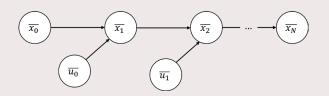
Odometry

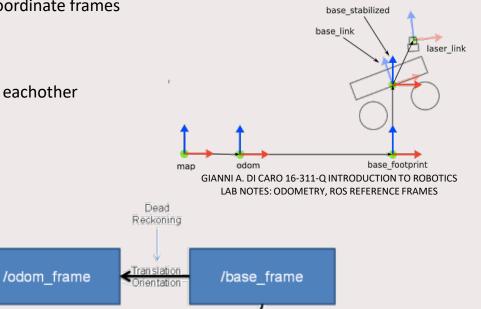
Drift

Translation

Drientation

- Odometry in odometry-frame
- Prior estimate (ang goal) in map-frame
- Measurement both translated and rotated w.r.t eachother
- How do we convert between them?

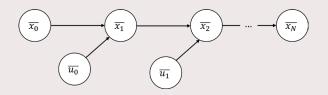




GIANNI A. DI CARO 16-311-Q INTRODUCTION TO ROBOTICS LAB NOTES: ODOMETRY, ROS REFERENCE FRAMES

/map_frame

Dead-reckoning Coordinate-Frames



- Homogenous transformations!
- For instance, we have the 2D homogenous transformation between robot and map frame

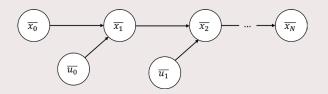
$$T_R^m = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & x_t \\ \sin \theta & \cos \theta & y_t \\ 0 & 0 & 1 \end{bmatrix}$$

• Then

$$\begin{bmatrix} x_o \\ 1 \end{bmatrix} = T_R^o \begin{bmatrix} x_R \\ 1 \end{bmatrix}$$

- For further details, or a recap:
 - <u>http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/</u> -> Homogenous Coordinates

Dead-reckoning Coordinate-Frames



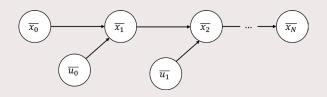
TII

• And

$$T_m^R = (T_R^M)^{-1} = \begin{bmatrix} R^{-1} & -R^{-1}T \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & -\cos\theta x_t - \sin\theta y_t \\ -\sin\theta & \cos\theta & \sin\theta x_t - \cos\theta y_t \\ 0 & 0 & 1 \end{bmatrix}$$

- For further details, or a recap:
 - <u>http://ais.informatik.uni-freiburg.de/teaching/ws22/mapping/</u> -> Homogenous Coordinates

Dead-reckoning *How*?



Given a prior estimate (in map frame)

While true:

odom_update ← new odom message Transform odom_update into map frame Add the odometry update to your prior estimate

What do we expect?

How does it perform given imperfect information?

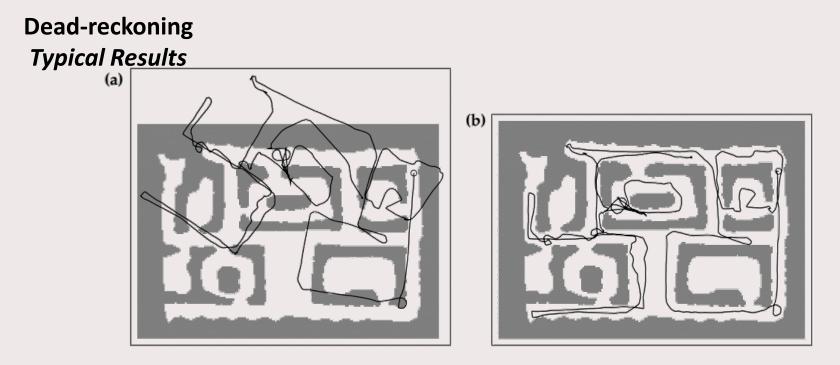


Figure 8.10 (a) Odometry information and (b) corrected path of the robot.

TU/e

From: Thrun, Sebastian. "Probabilistic robotics." Communications of the ACM 45.3 (2002): 52-57.

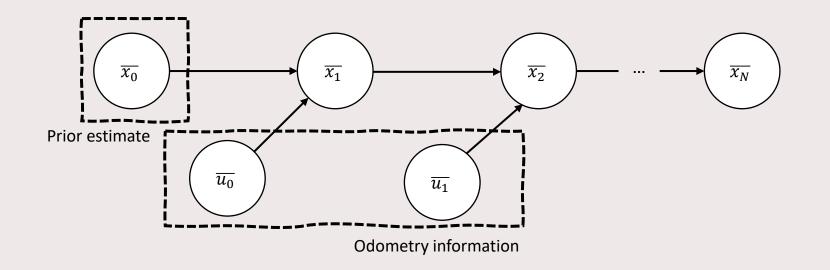
21 Department of Mechanical Engineering – Control Systems Technology

Can we do better?

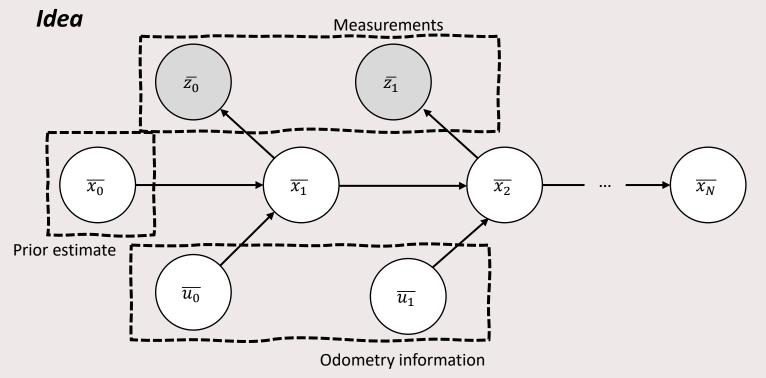
We have more than one source of Information!

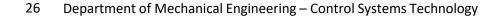
A First Look at Recursive State Estimation

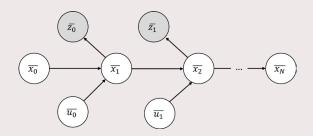
Recursive State-Estimation *Idea*



Recursive State-Estimation







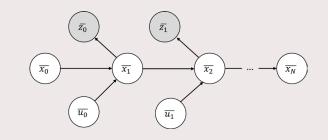
Core idea:

- Combine the uncertain information to obtain a more certain view,
- Incorporate measurements over multiple time steps.

→ Bayes Filter

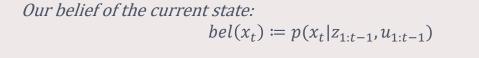
Our belief of the current state:

$$bel(x_t) \coloneqq p(x_t|z_{1:t-1}, u_{1:t-1})$$



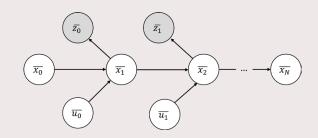
(a)	bel(x)
	x *

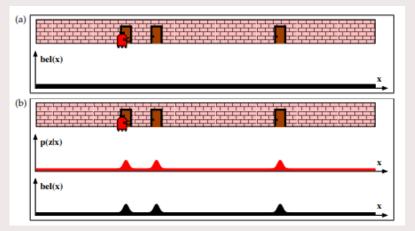
TU/e



Measurement update:

$$bel(x_{t+1}) = p(z_t|x_t)\overline{bel}(x_t)$$





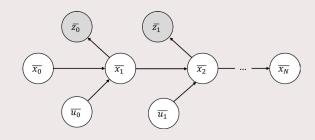
Our belief of the current state: $bel(x_t) \coloneqq p(x_t | z_{1:t-1}, u_{1:t-1})$

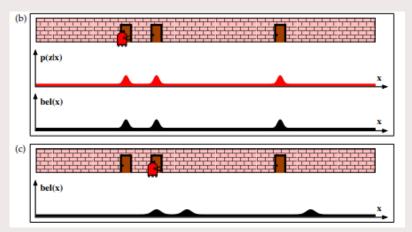
Measurement update:

$$bel(x_t) = p(z_t|x_t)\overline{bel}(x_t)$$

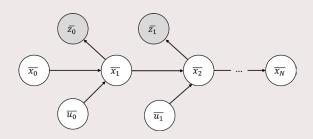
Control (dead-reckoning) update:

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$



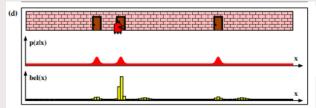


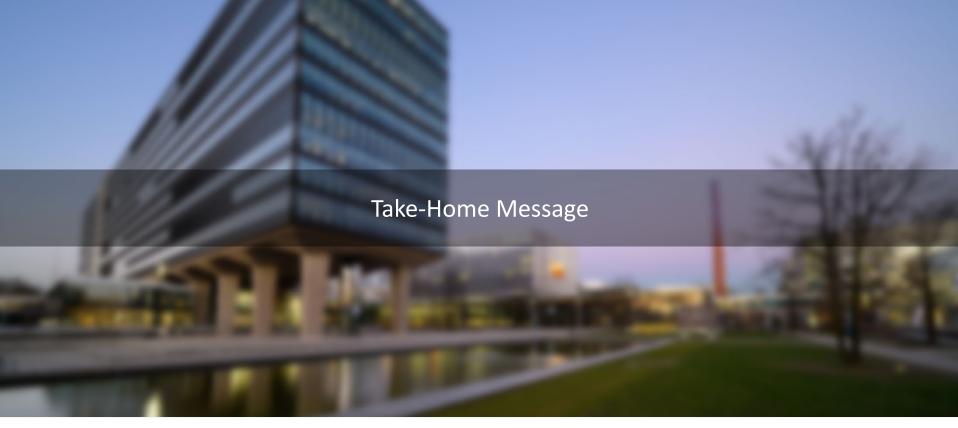
TU



However:

- The Bayes filter is generally intractable
- We cannot compute a solution in real time
- Next week:
 - The particle filter, state-of-practice approximation of the Bayes Filter





Localization is an integral part of the robot navigation problem

Dead-reckoning is easy but has its flaws.

Using multiple sensor modalities could allow you to achieve more accurate localization performance

