
2nd Workshop on Real-Time Tools, Copenhagen, Denmark, August 2002

Jitterbug and TrueTime: Analysis
Tools for Real-Time Control Systems

Anton Cervin, Dan Henriksson, Bo Lincoln, Karl-Erik Årzén

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
anton@control.lth.se

Abstract

The paper presents two recently developed, MATLAB-based analysis tools for
real-time control systems. The first tool, called JITTERBUG, is used to compute
a performance criterion for a control loop under various timing conditions. The
tool makes it easy to quickly judge how sensitive a controller is to implemen-
tation effects such as slow sampling, delays, jitter, etc. The second tool, called
TRUETIME, allows detailed co-simulation of process dynamics, control task exe-
cution, and network communication in a distributed real-time control system.
Arbitrary scheduling policies may be used, and the tasks may be written in C
code, MATLAB code, or implemented as Simulink block diagrams.

1. Introduction

Real-time control systems are becoming increasingly complex systems, from both
control and computer science perspectives. Today, even a seemingly simple embed-
ded control system often contains a multitasking real-time kernel and supports
networking. At the same time, the market demands that the cost of the system is
kept at a minimum. To use the available computing resources optimally, the design
of the control algorithms and the control software need to be considered at the
same time. For this purpose, new, computer-based tools for real-time and control
co-design are needed.

Digital control theory normally assumes equidistant sampling intervals and a
negligible or constant control delay from sampling to actuation. However, this can
seldom be achieved in practice. Within a node, tasks interfere with each other
through preemption and blocking when waiting for common resources. The execu-
tion times of the tasks themselves may be data-dependent or vary due to hardware
features such as caches. On the distributed level, the communication gives rise to
delays that can be more or less deterministic depending on the communication pro-
tocol. Another source of temporal nondeterminism is the increasing use of commer-
cial off-the-shelf (COTS) hardware and software components in real-time control,
e.g. general-purpose operating systems such as Windows and Linux, and general-
purpose network protocols such as Ethernet. These components are designed to
optimize average-case performance rather than worst-case performance.

Of course, the temporal nondeterminism can be reduced by proper choice of im-
plementation techniques and platforms. For example, time-driven static scheduling
improves the determinism. However, at the same time it reduces the flexibility and

limits the possibilities for dynamic modifications. Other techniques of similar na-
ture are time-driven architectures and languages such as TTA [Kopetz, 1997] and
Giotto [Henzinger et al., 2001], time-division communication protocols such as TTP
[Kopetz and Grünsteidl, 1994], and synchronous programming languages such as
Esterel, Lustre and Signal [Halbwachs, 1993]. But even with these techniques a
certain level of temporal nondeterminism is unavoidable.

The delay and jitter introduced by the computer system can potentially lead to
significant performance degradation. To achieve good performance in systems with
limited computer resources, the constraints of the implementation platform must be
taken into account at design time. To facilitate this, it is necessary to have software
tools to analyze and simulate how the timing affects the control performance. In
this paper two such tools are presented: JITTERBUG and TRUETIME.

JITTERBUG is a MATLAB-based toolbox which allows computation of a quadratic
performance criterion for a linear control system under various timing conditions.
The tool helps to quickly assert how sensitive a control system is to delay, jitter,
lost samples, etc, without resorting to simulation. The tool is quite general and can
also be used to investigate for instance jitter-compensating controllers, aperiodic
controllers, and multi-rate controllers. The toolbox is built upon well-known theory
(LQG theory and jump linear systems). Its main contribution is to make it easy
to apply this type of stochastic timing analysis to a wide range of problems. Much
of the inspiration for JITTERBUG comes from the work on real-time control systems
with random delays presented in [Nilsson, 1998a]. In conjunction with that work
two simple MATLAB toolboxes for control analysis and design were also produced
[Nilsson, 1998b].

The use of JITTERBUG assumes knowledge of sampling period and latency distri-
butions. This information can be difficult to obtain without access to measurements
from the true target system under implementation. Also, the analysis cannot cap-
ture all the details and nonlinearities (especially in the real-time scheduling) of the
computer system. A natural approach is then to instead use simulation. However,
today’s simulation tools make it difficult to simulate the true temporal behavior of
control loops. What is normally done is to introduce time delays in the control loop
representing average-case or worst-case delays. Taking a different approach, the
MATLAB/Simulink-based tool TRUETIME makes it possible to simulate the temporal
behavior of a multi-tasking real-time kernel executing controller tasks. The tasks
are controlling processes that are modeled as ordinary Simulink blocks. TRUETIME

also facilitates simulation of simple models of communication networks and their
influence on networked control loops. Different scheduling policies may be used, e.g.,
priority-based preemptive scheduling and earliest-deadline-first (EDF) scheduling.

TRUETIME can also be used as an experimental platform for research on dy-
namic real-time control systems. It is for instance possible to study compensation
schemes that adjusts the control algorithm based on measurements of actual timing
variations. It is also easy to experiment with more flexible approaches to real-time
scheduling of controllers, such as feedback scheduling. There, the available CPU or
network resources are dynamically distributed according to the current situation
(CPU load, the performance of the different loops, etc.) in the system.

While numerous other tools exist that support either simulation of control sys-
tems (e.g. MATLAB/Simulink) or simulation of real-time scheduling (e.g. STRESS
[Audsley et al., 1994], DRTSS [Storch and Liu, 1996], RTSIM [Casile et al., 1998]),
very few tools have been developed that support co-simulation of control systems
and real-time scheduling. An early, tick-based prototype of TRUETIME was presented
in [Eker and Cervin, 1999]. This version had no support for external interrupts and
could not handle fine-grained simulation details. Also, there was no support for sim-
ulation of networks. The RTSIM simulator [Casile et al., 1998] has recently been

H1(z)
H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
yu

v
1

2

3

τ1

τ2

(a) (b)

Figure 1 A simple JITTERBUG model of a computer-controlled system: (a) signal model, and
(b) execution model.

extended with a numerical module (based on the Octave library) that supports
simulation of continuous dynamics [Palopoli et al., 2000]. Compared to TRUETIME,
there is no graphical control systems editor in this tool. At the other end of the us-
ability spectrum, the simulation tool presented in [El-khoury and Törngren, 2001]
is entirely based on graphical modeling in Simulink, but is limited to predefined
network and CPU scheduling policies.

2. Analysis Using Jitterbug

In JITTERBUG, a control system is described by two parallel models: a signal model
and an execution model. The signal model is given by a number of connected, linear,
continuous-time or discrete-time systems. The execution model consists of a number
of execution nodes and describes when the different discrete-time blocks should be
updated during the control period.

An example of a JITTERBUG model is shown in Figure 1. Here, a computer-
controlled system is modeled by four blocks. The plant is described by the continuous-
time system G, and the controller is described by the three discrete-time systems
H1, H2, and H3. The system H1 could for instance represent a periodic sampler,
H2 could represent the computation of the control signal, and H3 could represent
the actuator. The associated execution model says that, at the beginning of each
period, H1 should first be executed (updated). Then there is a random delay τ1
until H2 is executed, and another random delay τ2 until H3 is executed. The de-
lays could model for instance computational delays, scheduling delays, or network
transmission delays.

2.1 Signal Model
A continuous-time system is described by the state-space equations

ẋc(t) = Acxc(t) + Bcu(t) + v(t)
y(t) = Ccxc(t) + Dcu(t)

where xc is the state vector, u is the input signal vector, y is the output signal
vector, v is a continuous-time Gaussian white-noise process with the (incremental)
covariance matrix Rc, and Ac, Bc, Cc and Dc are constant matrices describing the
dynamics of the system. The cost of the system is specified as

Jc = lim
T→∞

1
T

E
{∫ T

0
xT

c (t)Qcxc(t)dt
}

where Qc is a positive semidefinite matrix.
A discrete-time system is described by the state-space equations

xd(tk+1) = Adxd(tk) + Bdu(tk) + e(tk)
y(tk) = Cdxd(tk) + Ddu(tk)

where xd is the state vector, u is the input signal vector, y is the output signal vector,
e is a discrete-time Gaussian white noise process with the covariance matrix Rd, and
Ad, Bd, Cd and Dd are (possibly time-varying) matrices describing the dynamics
of the system. The input signals are sampled when the system is updated, and the
outputs signals is held constant between updates. The cost of the system is specified
as

Jd = lim
T→∞

1
T

E
{∫ T

0
xT

d (t)Qdxd(t)dt
}

where Qd is a positive semidefinite matrix. Note that the update instants tk need
not be equidistant in time, and that the cost is defined in continuous time.

The total system is formed by appropriately connecting the inputs and outputs
of a number of continuous-time and discrete-time systems. The total cost to be
evaluated by the toolbox is summed over all continuous-time and discrete-time
systems:

J =
∑

Jc +
∑

Jd (1)

2.2 Execution Model
The execution model consists of a number of execution nodes. Each node can be
associated with zero or more discrete-time systems in the signal model which should
be updated when the node becomes active. At time zero, the first node is activated.
The first node can be declared to be periodic (indicated by an extra circle in the
illustrations), which means that the execution will restart at this node every h
seconds. This is useful to model periodic controllers and also simplifies the cost
calculations a lot.

Each node is associated with a time delay τ which must elapse before the next
node can become active. (If unspecified, the delay is assumed to be zero.) The delay
can be used to model computational delay, transmission delay in a network, etc. A
delay is described by a discrete-time probability density function

Pτ = [Pτ (0) Pτ (1) Pτ (2) . . .]

where Pτ (k) represents the probability of a delay of kδ seconds. The time grain δ
is a constant which is specified for the whole model.

In periodic systems, the execution is preempted if the total delay
∑

τ in the
system exceeds the period h. Any remaining execution nodes will be skipped. This
models a real-time system where hard deadlines (equal to the period) are enforced
and the control task is aborted at the deadline.

An aperiodic system can be used to model a real-time system where the task
periods are allowed to drift if there are overruns. It could also be used to model
e.g. a controller which samples “as fast as possible” instead of waiting for the next
period.

Node- and Time-Dependent Execution The same discrete-time system may
be updated in several execution nodes. It is possible to specify different update
equations (i.e. different Ad, Bd, Cd and Dd matrices) in the different cases. This can

11

22

3

3

4

τ1τ1

τ2∑
τ < t

∑
τ ≥ t

p(2) p(3)

(a) (b)

Figure 2 Alternative execution paths in a JITTERBUG execution model: (a) random choice
of path, and (b) choice of path depending on the total delay from the first node.

be used to model e.g. a filter where the update equations look different depending
on whether a measurement value is available or not.

It is also possible to make the update equations depend on the time since the first
node became active. This can be used to model e.g. jitter-compensating controllers.

Alternative Execution Paths For some systems, it is desirable to specify alter-
native execution paths (and thereby multiple next nodes). In JITTERBUG, two such
cases are possible to model, see Figure 2:

(a) A vector n of next nodes can be specified with a probability vector p. After the
delay, execution node n(i) will be activated with probability p(i). This can be
used to model e.g. a sample being lost with some probability.

(b) A vector n of next nodes can be specified with a time-vector t. If the total delay
in the system since the node exceeds t(i), node n(i) will be activated next. This
can be used to model e.g. time-outs and different compensation schemes.

Limitations Internally, the execution model is translated into a Markov chain,
where each state is associated with a set of dynamics in the signal model. To keep
the Markov chain finite, there cannot be any timing dependencies past the first
node in the execution model. Also, the transitions in the execution model must be
independent from the states and the random noise in the signal model. This allows
the total system to be treated as a jump linear system [Krasovskii and Lidskii,
1961; Ji et al., 1991] whose stationary properties are straight-forward to analyze.

2.3 Evaluation of Cost
The evaluation of the total cost (1) is performed in three steps: First, the cost
functions, the continuous-time noise, and the continuous-time systems are sampled
using the time-grain of the model. Second, the closed-loop system is formulated as
a jump linear system, where Markov nodes are used to represent the time-steps
in and between the execution nodes. Third, the stationary covariance of all states
in the system is calculated. The cost is finally obtained as a linear weighting of
the variance. More details on the internal workings of JITTERBUG can be found in
[Lincoln and Cervin,].

For systems without a periodic node, the variance must be computed iteratively,
until the cost and the variance converge.

For periodic systems, the Markov state always returns to the periodic execution
node every h/δ time steps. The stationary variance can then be obtained by solving
a linear system of equations. (Assuming n states in the total system, there will
be n2 equations.) In this case the cost calculation is fast and exact.

If the total system is not stable, the toolbox returns an infinite cost (J = ∞).

2.4 Example: A Networked Control System
As an example, consider a control loop where the sensor, the actuator, and the
controller are distributed among different nodes in a network. The sensor node is
assumed to be time-driven, while the controller and actuator nodes are assumed to
be event-driven. At a fixed period h, the sensor samples the process and sends the
measurement sample over the network to the controller node. There, the controller
computes a control signal and sends it over the network to the actuator node, where
it is subsequently actuated.

The JITTERBUG model of the system was shown in Figure 1. The process is
assumed to be a DC servo and is described by the continuous-time system

G(s) = 1000
s(s+ 1)

The process is driven by white Gaussian continuous-time noise.
The process is sampled periodically with the interval h. The sampler and the

actuator are described by the trivial discrete-time systems

H1(z) = H3(z) = 1

while the controller is assumed to be discrete-time PD (proportional-derivative)
regulator on the form

H2(z) = −K
(

1+ Td

h
z− 1

z

)
where the controller parameters are chosen as K = 1.5 and Td = 0.035.

The delays in the computer system are modeled by the two independent, random
variables τ1 and τ2. The total delay from sampling to actuation is thus given by
τ tot = τ1 +τ2. It is assumed that the total delay never exceeds the sampling period
(otherwise JITTERBUG would skip the remaining updates).

Finally, as a cost function, we choose the sum of the squared process input and
the squared process output:

J = lim
T→∞

1
T

E
{∫ T

0

(
y2(t) + u2(t)) dt

}
(2)

An outline of the MATLAB commands needed to specify the model and compute
the value of the cost function are given in Figure 3.

Sampling Period and Delay A control system can typically give satisfactory
performance over a range of sampling periods. In textbooks in digital control, e.g.
[Åström and Wittenmark, 1997], rules of thumb for sampling period selection are
often given. One such rule suggests that the sampling interval h should be chosen
such that

0.2 < ω bh < 0.6
where ω b is the bandwidth of the closed-loop system. In our case, a continuous-
time PD controller with the given parameters would give a bandwidth of about
ω b = 80 rad/s. This would imply a sampling period of between 2.5 and 7.5 millisec-
onds. The effect of computational delay is typically not considered in such rules
of thumb, however. Using JITTERBUG, the combined effect of sampling period and
computational delay can be easily investigated. In Figure 4, the cost function (2)
for the networked control system has been evaluated for different sampling periods
in the interval 1 to 10 milliseconds, and for constant total delay ranging from 0 to
100 % of the sampling interval. It is seen that a one-sample delay gives negligible
performance degradation when h = 1 ms. When h = 10 ms, a one-sample delay
makes the system unstable (i.e., the cost J goes to infinity).

G = 1000/(s*(s+1)); Define the process
H1 = 1; Define the sampler
H2 = -K*(1+Td/h*(z-1)/z); Define the controller
H3 = 1; Define the actuator

Ptau1 = [...]; Define delay probability distribution 1
Ptau2 = [...]; Define delay probability distribution 2

N = initjitterbug(delta,h); Set time-grain and period
N = addexecnode(N,1,Ptau1,2); Define execution node 1
N = addexecnode(N,2,Ptau2,3); Define execution node 2
N = addexecnode(N,3); Define execution node 3

N = addcontsys(N,1,G,4,Q,R1,R2); Add plant, specify cost and noise
N = adddiscsys(N,2,H1,1,1); Add sampler to node 1
N = adddiscsys(N,3,H2,2,2); Add controller to node 2
N = adddiscsys(N,4,H3,3,3); Add actuator to node 3

N = calcdynamics(N); Calculate internal dynamics
J = calccost(N); Calculate the total cost

Figure 3 This MATLAB script shows the commands needed to compute the performance
index of the networked control system using JITTERBUG.

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Total delay (in % of h)Sampling period h

C
os

t
J

Figure 4 Example of a cost function computed using JITTERBUG. The plot shows the cost as
a function of sampling period and delay in the networked control system example.

3. Simulation Using TrueTime

Analysis using JITTERBUG can be used to quickly determine how sensitive a control
system is to slow sampling, delay, jitter, etc. For more detailed analysis, and further,
system-wide real-time design, the more general simulation tool TRUETIME can be
used.

3.1 The Simulation Environment
In TRUETIME, which is based on MATLAB/Simulink, computer and network blocks
are introduced. The computer block executes user-defined threads and interrupt

Snd

Rcv

Schedule

TrueTime Network

A/D

Interrupts

Nw Rcv

D/A

Nw Snd

Schedule

Monitors

TrueTime Computer

Scope

Scope

Scope

em

em

Figure 5 The interfaces to the TRUETIME blocks. The Schedule and Monitor outputs display
the allocation of common resources (CPU, monitors, network) during the simulation.

handlers representing, e.g., I/O tasks, controller tasks, and network interface tasks.
The scheduling policy of individual computer blocks is arbitrary and decided by the
user. Likewise, in the network block, messages are sent and received according to
a chosen network model.

The level of simulation detail is also chosen by the user—it is often not necessary
nor desirable to simulate code execution on instruction level or network transmis-
sions on bit level. TRUETIME allows the execution time of threads and the trans-
mission times of messages to be modeled as constant, random, or data-dependent.
Furthermore, TRUETIME allows simulation of context switching and task synchro-
nization, using events or monitors.

The interfaces to the computer and network Simulink blocks are shown in Fig-
ure 5. Both blocks are event-driven with the execution determined by internal and
external events. Internal events correspond to clock interrupts caused, e.g., by the
release of a task from the time queue or the expiry of a timer. An external interrupt
is associated with one of the external interrupt channels of the computer block. The
interrupt is triggered when the signal of the corresponding channel changes value.
This type of interrupt may be used, e.g., to simulate engine controllers that are
sampled against the rotation of the motor or distributed controllers that execute
when measurements arrive on the network.

The block inputs are assumed to be discrete-time signals, except the signals con-
nected to the A/D converters of the computer block which may be continuous-time
signals. All outputs are discrete-time signals. The Schedule and Monitors outputs
display the allocation of common resources (CPU, monitors, network) during the
simulation.

The blocks are variable-step, discrete, MATLAB S-functions written in C, the
Simulink engine being used only for timing and interfacing with the rest of the
model, e.g., the continuous dynamics of controlled plants. It should thus be easy
to port the blocks to other simulation environments, provided these environments
support event detection (zero-crossing detection).

3.2 The Computer Block
The computer block S-function simulates a computer with a simple but flexible real-
time kernel, A/D and D/A converters, a network interface, and external interrupt
channels.

Internally, the kernel maintains a number of data structures that are commonly
found in a real-time kernel: a ready queue, a time queue, and records for threads,
interrupt handlers, monitors, timers etc., that have been created for the simulation.

The execution of threads and interrupt handlers is defined by user-written code
functions. These functions can be written either in C (for speed) or as MATLAB-code
(for ease of use). Control algorithms may also be defined graphically using ordinary
Simulink blocks.

Threads Each thread is defined by a set of attributes and a code function. The
attributes include a name, a release time, a worst-case execution time, an execution
time budget, relative and absolute deadlines, a priority (if fixed-priority scheduling
is used), and a period (if the thread is periodic). Some of the attributes, such as
the release time and the deadline, are constantly updated by the kernel during
simulation. Other attributes, such as period and priority, are normally kept constant
but can be changed by calls to kernel primitives when the thread is executing.

Furthermore, it is possible to associate three different interrupt handlers with
each thread. A thread termination handler will be triggered when the code function
of the thread has executed its last segment, see below. Similar to [Bollella et al.,
2000] a deadline overrun handler and an execution time overrun handler may also
be attached to each thread.

Interrupts and Interrupt Handlers When an external or internal interrupt
occurs, a user-defined interrupt handler is scheduled to serve the interrupt. An
interrupt handler works much the same way as a thread, but is scheduled on a
higher priority level. An interrupt handler is defined by a name, a priority and
a code function. External interrupts also have a latency, during which they are
insensitive to new invocations.

Priorities and Scheduling Simulated execution occurs at three distinct priority
levels: the interrupt level (highest priority), the kernel level, and the thread level
(lowest priority). The execution may be preemptive or non-preemptive; this can be
specified individually for each thread and interrupt handler.

At the interrupt level, interrupt handlers are scheduled according to fixed priori-
ties. At the thread level, dynamic-priority scheduling may be used. At each schedul-
ing point, the priority of a thread is given by a user-defined priority function, which
is a function of the thread attributes. This way it is easy to simulate different
scheduling policies. Predefined priority functions exist for most of the commonly
used scheduling schemes, e.g., rate-monotonic scheduling and earliest-deadline-first
scheduling.

Code The code associated with threads and interrupt handlers is scheduled and
executed by the kernel as the simulation progresses. The code may be divided into
several code segments, as shown in Figure 6. The code can interact with other
tasks and with the environment at the beginning of each code segment. This con-
struct makes it possible to accurately model input-output delays, blocking when
accessing shared resources, etc. The simulated execution time of each segment is
returned by the code function, and can be modeled as being constant, random, or
even data-dependent. The kernel keeps track of the current segment and calls the
code functions with the proper argument during the simulation. Execution resumes
in next segment when the task has been running for the time associated with the
previous segment. This means that preemption from higher-priority activities and
interrupts may cause the actual delay between the segments to be longer than the
actual execution time.

Figure 7 shows an example of a code function corresponding to the time line
in Figure 6. The function implements a simple controller. In the first segment, the
plant is sampled and the control signal is computed. In the second segment, the
control signal is actuated and the controller states are updated. The third segment
indicates the end of execution, which will trigger execution of the termination han-
dler of the thread.

The functions calculateOutput and updateState are assumed to represent the
implementation of an arbitrary controller. A/D and D/A conversion is performed

1 2 3

Simulated execution time

Execution of user code

Figure 6 The execution of the code associated with threads and interrupt handlers is mod-
eled by a number of code segments with different execution times. Execution of user code
occurs at the beginning of each code segment.

function exectime = myController(segment)

switch (segment),

case 1,

y = ttAnalogIn(1);

u = calculateOutput(y);

exectime = 0.002;

case 2,

ttAnalogOut(1, u);

updateState(y);

exectime = 0.003;

case 3,

exectime = -1; % finished

end

Figure 7 Example of a simple code function in TRUETIME.

using the kernel primitives ttAnalogIn and ttAnalogOut.
Besides A/D and D/A conversion many other kernel primitives exist that can be

called from the code functions. These include functions to send and receive messages
over the network, create and remove timers, perform monitor operations, change
thread attributes etc.

Graphical Controller Representation As an alternative to textual implemen-
tation of the controller algorithms, TRUETIME also allows for graphical represen-
tation of the controllers. Controllers represented as discrete Simulink blocks, can
be used directly in TRUETIME to evaluate timing performance. The block system
is called from the code function using the primitive ttCallBlockSystem. A block
diagram of a PI-controller is shown in Figure 8. The block system has two inputs,
the reference signal and the process output, and two outputs, the control signal and
the execution time.

Output Graphs Depending on the simulation a number of different output
graphs are generated by the TRUETIME blocks. Each computer block will produce
two graphs; a computer schedule and a monitor graph, and the network block will
produce a network schedule. The computer schedule will display the execution trace
of each thread and interrupt handler during the course of the simulation. If context
switching is simulated, the graph will also display the execution of the kernel. In
an analogous way the network schedule shows the transmission of messages over
the network.

Figure 8 Controllers represented using ordinary discrete Simulink blocks may be used
directly in TRUETIME to evaluate timing performance. The example above shows a PI
(proportional-integral) controller.

3.3 The Network Block
The network model is similar to the real-time kernel model, albeit simpler. The
network block is event-driven and executes when messages enter or leave the net-
work. A message contains information about the sending and the receiving computer
node, user data (typically measurement signals or control signals), the length of
the message, and optional real-time attributes such as a priority or a deadline.

In the network block, it is possible to specify the speed of the network, the
medium access control protocol (CSMA/CD, CSMA/CA, round robin, FDMA, or
TDMA) and a number of other parameters. When the simulated transmission of a
message has completed, it is put in a buffer at the receiving computer node, which
is notified by a hardware interrupt.

3.4 Example: The Networked Control System Revisited
Using TRUETIME it is possible to do a more general simulation of the distributed
control system, where the effects of scheduling in the CPU’s and simultaneous
transmission of messages over the network can be studied in detail. TRUETIME can
then be used to simulate different scheduling policies of CPU and network and to
experiment with different compensation schemes to cope with the induced delays.

A more realistic model of the delays is obtained by the introduction of a distur-
bance node, which generates random high-priority traffic over the network. Also, in
the controller node, an interfering high-priority thread is executing. The TRUETIME

simulation model of the system contains one computer block for each node and a
network block, see Figure 9. The oscillatory control performance seen in the figure
is a result of the delays induced by the disturbance node and the interfering thread
in the controller node.

4. Conclusion

Designing a real-time control system is essentially a co-design problem. Choices
made in the real-time design will affect the control design and vice versa. For
instance, deciding on a particular network protocol will give rise to certain delay
distributions which must be taken into account in the controller design. On the
other hand, bandwidth requirements in the control loops will influence the choice
of CPU and network speed. Using an analysis tool such as JITTERBUG, it is possible
to quickly assert how sensitive the control loop is to slow sampling rates, delay,
jitter, and other timing problems. Aided by this information, it is then possible

Figure 9 TRUETIME simulation of a distributed control system. The poor control perfor-
mance is a result of delays caused by colliding network transmissions and preemption in the
controller node.

to proceed with more detailed, system-wide real-time and control design using a
simulation tool such as TRUETIME.

JITTERBUG allows the user to compute a quadratic performance criterion for a lin-
ear control system under various timing conditions. The control system is described
using a number of continuous-time and discrete-time linear systems. A stochastic
timing model with random delays is used to describe the execution of the system.
The tool can also be used to investigate for instance aperiodic controllers, multirate
controllers, and jitter-compensating controllers.

TRUETIME facilitates event-based co-simulation of a multi-tasking real-time ker-
nel containing controller tasks and the continuous dynamics of controlled plants.
The simulations capture the true, timely behavior of real-time controller tasks and
communication networks, and dynamic control and scheduling strategies can be
evaluated from a control performance perspective.

References

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems, third
edition. Prentice Hall.

Audsley, N., A. Burns, M. Richardson, and A. Wellings (1994): “STRESS—A

simulator for hard real-time systems.” Software—Practice and Experience, 24:6,
pp. 543–564.

Bollella, G., B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull
(2000): The Real-Time Specification for Java. Addison-Wesley.

Casile, A., G. Buttazzo, G. Lamastra, and G. Lipari (1998): “Simulation and tracing
of hybrid task sets on distributed systems.” In Proc. 5th International Conference
on Real-Time Computing Systems and Applications.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for real-time and control systems
co-design.” In Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications, pp. 320–327.

El-khoury, J. and M. Törngren (2001): “Towards a toolset for architecural design of
distributed real-time control systems.” In Proc. Real-Time Systems Symposium.

Halbwachs, N. (1993): Synchronous programming of reactive systems. Kluwer
Academic Pub.

Henzinger, T. A., B. Horowitz, and C. M. Kirsch (2001): “Giotto: A time-triggered
language for embedded programming.” In Proceedings of EMSOFT.

Ji, Y., H. Chizeck, X. Feng, and K. Loparo (1991): “Stability and control of discrete-
time jump linear systems.” Control-Theory and Advanced Applications, 7:2,
pp. 447–270.

Kopetz, H. (1997): Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer.

Kopetz, H. and G. Grünsteidl (1994): “TTP—A protocol for fault-tolerant real-time
systems.” IEEE Computer, January, pp. 14–23.

Krasovskii, N. and E. Lidskii (1961): “Analytic design of controllers in systems
with random attributes, I, II, III.” Automation and Remote Control, 22:9–11,
pp. 1021–1025, 1141–1146, 1289–1294.

Lincoln, B. and A. Cervin “Jitterbug: A tool for analysis of real-time control
performance.” Submitted to the 2002 Conference on Decision and Control.

Nilsson, J. (1998a): Real-Time Control Systems with Delays. PhD thesis ISRN
LUTFD2/TFRT--1049--SE, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

Nilsson, J. (1998b): “Two toolboxes for systems with random delays.” Report ISRN
LUTFD2/TFRT--7572--SE. Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Palopoli, L., L. Abeni, and G. Buttazzo (2000): “Real-time control system analysis:
An integrated approach.” In Proc. 21st IEEE Real-Time Systems Symposium.

Storch, M. F. and J. W.-S. Liu (1996): “DRTSS: A simulation framework for complex
real-time systems.” In Proc. 2nd IEEE Real-Time Technology and Applications
Symposium.

