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Abstract 

The paper presents JITTERBUG, a MATLAB-based tool- 
box for real-time control performance analysis. The 
control system is described using a number of con- 
nected continuous-time and discrete-time linear sys- 
tems driven by white noise. The control performance 
is measured by a continuous-time quadratic cost func- 
tion. A stochastic timing model is used to describe 
when the different discrete-time systems are updated 
during the control period. Building different models, 
the tool makes it easy to investigate how the control 
performance is affected by e.g. delay, jitter, lost sam- 
ples, aborted computations, and jitter compensation. 
Aperiodic and multi-rate controllers may also be stud- 
ied. The tool is also capable of computing the spectral 
densities of the different signals in the system. 

1. Introduction 

Controllers are often designed with little regard 
for the real-time implementation. In the case of 
continuous-time design, it is typically assumed that 
the controller can be subsequently discretized and ex- 
ecuted at a sufficiently high frequency. In the case of 
discrete-time design, it is commonly assumed that the 
computing platform can provide deterministic sam- 
pling and that the task execution will introduce neg- 
ligible or a t  least constant computational delay. 
In systems with limited computing resources (e.g. 
embedded control systems), however, a combination 
of slow sampling and other timing problems may 
lead to significant performance degradation. Often, 
the controller is implemented as a task in a (more 
or less real-time) operating system, and the task 
scheduling can introduce additional delays as  well as  
sampling and actuation jitter (depending on how the 
110 is implemented). In real-time operating systems 
which enforces hard deadlines, a control task may 
be aborted before it has finished its computations 
and produced a control signal. Networked control 

systems are another source of timing problems. The 
network can introduce delay and jitter, and messages 
(measurement or control signals) may be lost. 
To achieve good performance in systems with limited 
computer resources, the constraints of the implemen- 
tation must be taken into account a t  design time. 
Typically, trade-offs between different activities in the 
system must be made. For instance, boosting the pri- 
ority of one task will improve its responsiveness but 
may introduce delay and jitter in  other tasks. The pe- 
riods of all tasks must be chosen such that the CPU is 
not overloaded, and so on. Having a quality-of-service 
measure which takes the timing effects into account 
can be a help when allocating system resources to the 
different tasks. 
This paper presents a 1MATLAB-based toolbox called 
JITTERBUG which facilitates the computation of a 
quadratic performance criterion for a linear con- 
trol system under various timing conditions. The 
tool helps to quickly assert how sensitive a control 
system is to delay, jitter, lost samples, etc, with- 
out resorting to simulation. The tool is quite gen- 
eral and can also be used to investigate for in- 
stance jitter-compensating controllers, aperiodic con- 
trollers, and multi-rate controllers. The toolbox is 
built upon well-known theory. Its main contribu- 
tion is to make it easy to apply this type of 
stochastic analysis to a wide range of problems. The 
toolbox and a reference manual are available at 
ht tp:  //W. cont ro l .  l t h .  se/-lincoln/ j i t terbug/  
The analysis in this paper builds on jump linear sys- 
tems, which were first studied in [3]. Discrete-time 
jump linear systems are treated in e.g. [2]. Linear- 
quadratic analysis and control of systems with ran- 
dom network delays are studied in [4]. An alterna- 
tive to analysis is simulation. The MATLAB/Simulink- 
based tool TRUETIME [l] can be used for detailed co- 
simulation of plant dynamics, control task execution, 
and real-time scheduling of CPU and network. 
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2. System Description 

In JITTERBUG, a control system is described by two 
parallel models: a signal model and a timing model. 
A simple model of a computer-controlled system is 
shown in Figure 1. The plant is described by the 
continuous-time system G, and the controller is de- 
scribed by two discrete-time systems, H I  and H z .  
The system H I  could for instance represent a peri- 
odic sampler, while Hz could represent the computa- 
tion and actuation of the control signal. The associ- 
ated timing model says that, at the beginning of each 
control period, H I  should first be executed (updated). 
Then there is a (possibly random) delay ZI until Hz 
is executed. This simple model could be used to inves- 
tigate for instance the impact of delay and jitter on 
control performance. We will return to this example 
in Section 4.1. 

I 1 I 

Figure 1: A simple JITTERBUG model of a computer- 
controlled system: (a) signal model, and (b) tim- 
ing model. 

2.1 Signal Model 
The signal model consists of a number of inter- 
connected continuous-time and discrete-time linear 
systems driven by white noise. 
A continuous-time system is described by 

k , ( t ) = A x , ( t ) + B u ( t ) + u , ( t )  
Y ( t )  = Cxdt )  

where A, B ,  and C are constant matrices, and U, is a 
continuous-time white noise process with covariance' 
RI,. The cost o f  the system is defined a s  

l T  J, = lim - xT(t)Q,r,(t) dt  
T-m T 1 

where Qc is a positive semidefinite matrix. 
A discrete-time system is described by 

x d ( t k + l )  = @ X d ( t k )  f w t k )  + U d ( t k )  

Y(&) = c x d ( t k )  f D U ( t k )  + e d ( t k )  

'By this we mean that vc has the spectral density 4(0) = &RI.. 

where @, r, C, and D may be time-varying matrices 
(see below). The covariance of the discrete-time white 
noise processes ud and ed is given by 

The input signal U is sampled when the system is 
updated, and the output signal y is held between 
updates. The cost of the system is defined a s  

where Qd is a positive semidefinite matrix. Note that 
the update instants t k  need not be equidistant in time, 
and that  the cost is defined in continuous time. 
The total system is formed by appropriately connect- 
ing the inputs and outputs of a number of continnous- 
time and discrete-time systems. Throughout, MIMO 
formulations are allowed, and a system may collect 
its inputs from a number of other systems. The total 
cost to be evaluated is summed over all continuous- 
time and discrete-time systems: 

J = J, + J d  

2.2 Timing Model 
The timing model consists of a number of timing 
nodes. Each node can be associated with zero or 
more discrete-time systems in  the signal model which 
should be updated when the node becomes active. 
At time zero, the first node is activated. The first 
node can be declared to be periodic (indicated by an 
extra circle in the illustrations), which means that the 
execution will restart in this node every h seconds. 
This is useful to model periodic controllers and also 
simplifies the cost calculations a lot, see Section 3.3. 
Each node is associated with a time delay which 
must elapse before the next node can become ac- 
tive. (Ifunspecified, the delay is assumed to be zero.) 
The delay can be used to model computational delay, 
transmission delay in a network, etc. A delay is de- 
scribed by a discrete-time probability density function 

P r  = (PZ(0) Pr(1) Pr(2) ... 1 
where P,(i) represents the probability of a delay of 
is seconds. The time grain 6 is a constant which is 
specified for the whole model. 

Node- and Time-Dependent Execution The 
same discrete-time system may be updated in several 
timing nodes. It is possible to specify different update 
equations (i.e. different @, r, C and D matrices) in 
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Figure 2: Alternative execution paths: (a) random choice 
of path, and (b) choice of path depending on the 
total delay from the first node. 

the different cases. This can be used to model e.g. 
a filter where the update equations look different de- 
pending on whether a measurement value is available 
or not. An example of this type is given in Section 4.2. 

It is also possible to make the update equations 
depend on the time since the first node became active. 
This can be used to model e.g. jitter-compensating 
controllers. 

Alternatiue Execution Paths For some systems, 
it is desirable to specify alternative execution paths 
(and thereby multiple next nodes). In JITTERBUG, two 
such cases are possible to model, see Figure 2: 

(a) A vector n of next nodes can be specified with 
a probabilityvector p. After the delay, node n(i) 
will be activated with probabilityp(i). This can 
be used to model e.g. a sample being lost with 
some probability. 

(b) A vector n of next nodes can be specified with a 
time-vector t. If the total delay since the first 
node exceeds t ( i ) ,  node n(i) will be activated 
next. This can be used to model e.g. time-outs 
and different compensation schemes. 

Periodic us Aperiodic Systems For periodic sys- 
tems (i.e., for systems where the first timing node is 
periodic), the cost J can be calculated algebraically. 
The solver is fast and produces an exact solution. For 
aperiodic systems, the cost must be computed itera- 
tively until it converges (if ever). From this point of 
view, periodic systems are clearly preferable. 
In periodic systems, the execution is preempted if the 
total  delay T in the system exceeds the period h. 
Any remaining timing nodes will be skipped. This 
models a real-time system where hard deadlines 
(equal to the period) are enforced and the control task 
is aborted a t  the deadline. 
An aperiodic system can be used to model a real-time 
system where the task periods are allowed to driR 

~ 
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if there are overruns. It could also be used to model 
e.g. a controller which samples "as fast as  possible" 
instead of waiting for the next period. 

3. Internal Workings 

Inside JITTERBUG, the states and the cost are consid- 
ered in continuous time. The inherently discrete-time 
states, e.g. in discrete-time controllers or filters, are 
treated as  continuous-time states with zero dynamics. 
This means that the total system can be written as 

k ( t )  = Ax(t) + w ( t )  (2) 

where x collects all the states in the system, and w is 
continuous-time white noise process with covariance 
1. To model the discrete-time changes of some states 
as a timing node n is activated, the state is instanta- 
neously transformed by 

x ( t + )  = E,x(t) + e.(t) 

where e, is a discrete-time white noise process with 
covariance W,. 
The total cost (1) for the system can be written as  

J = T-m lim - T xT(t)&(t)dt (3) I' 
where 6 is a positive semidefinite matrix. 

3.1 Sampling the System 
JITTERBUG relies on discretized time to calculate the 
variance of the states and the cost. No approximations 
are involved, however. Sampling the system (2) with a 
period of 6 (the time-grain in the delay distributions) 
gives 

where the covariance of U is R, and the cost (3) 
becomes 

z(k6 + 6)  = @x(k6)  + u(k6) (4) 



r = I O  0.1 0.2 0.3 0.41 Continuous dynamics 

w 0.4 0.3 0.2 0 1 

Figure 3 A random delay (above) modeled as a jump lin- 
ear system (below), where the delay is repre- 
sented by additional Markov nodes in between 
the timing nodes. 

or, equivalently, from 

and 

M11 ME M13 
M21 MZZ M23 =exp 0 -A RT 

M32 M331 ([f 1') 
so that  

@ = P22  

Q = PL% 
R = MZM23 

q = tr(QMj%) 

3.2 Timing Representation 
As time is discretized, we can transform the system 
description into a jump linear system, where the 
Markov state represents the current timing state of 
the system. Each timing node is represented by one 
Markov node. In between timing nodes additional 
Markov nodes representing the delay are inserted as 
illustrated in Figure 3. 
Consider following one path in the Markov chain. 
For each node which is not a timing node, only 
the continuous states of the system change. In each 
time-step, they evolve as in (4), and thus the state 
covariance P(k6) = E { x ( k 6 ) x T ( k 6 ) }  evolves as 

P(k6 + 6) = @P(kS)@T + R 
At each timing node n, the system is additionally 
transformed as  in (3), 

P(&s+) = E"P(~s)E,T + w, 
where W, is the covariance of the discrete-time noise 
e , (kS)  in node n. See Figure 4 for an illustration. 
Combining the above, we define @" as 

.\... - 
\ -._ 

+ discrete dynamics 

Figure 4: The continuous-time dynamics is active between 
all Markov nodes, whereas the discrete-time 
dynamics is activated only before a timing node. 

@ if n is not a timing node 
*n = { E n @  if n is a timing node 

and similarly R,  as 

R if n is not a t imiig node 

R " = {  E,RE,T + W, if n is a timing node 

3.3 Calculating Variance and Cost 
Now consider all possible Markov states simultane- 
ously. Let xn(k6) he the probability of being in Markov 
state n a t  time k6, and let P, (k6) be the covariance of 
the state if the system is in Markov state n at time k6. 
Furthermore, let the transition matrix of the Markov 
chain be 6, such that 

n(k6 + 6)  = o x ( k 6 )  

The state covariance then evolves as 

P,(k6+6) = Ca,,xi(KG)(@,Pj(ks)@~+R,) (5) 

and the immediate cost at time k6 is calculated as 

For systems without a periodic node, equation (5) 
must he iterated until the cost and variance con- 
verge. For periodic systems, the Markov state always 
returns to the periodic timing node every hl6 time 
steps. As equation (5) is affine in P, we can fmd the 
stationary covariance PI (00) in the periodic node by 
solving a linear system of equations. The total cost is 
then calculated over the timesteps in one period. The 
toolhox returns the cost J = 00 if the system is not 
mean-square stable. 

3.4 Calculating Spectral Densities 
For periodic systems, the toolhox also computes the 
discrete-time spectral densities of all outputs a s  oh- 
served in the periodic timing node. The spectral den- 
sity of an  output y is defined as 

l r n  
C Y  ( U )  = ry(k)e- ikm 

k=-m 
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The covariance function rr (k) is given by 

where 6 is the average transition matrix over a 
period, and q(m) is the stationary covariance in the 
periodic node. The spectral density is returned as a 
linear system F ( z )  such that @y(o) = F(e'"). 

4. Examples 

4.1 Delay and Jitter in a D M  Controller 
Delays are a common problem in real-time control 
systems. In this example we examine the effect of 
randomly time-varying delays, or  jitter. Generally, it 
is straight-forward to compensate for a constant delay, 
while jitter compensation is a harder issue. 
In this example a DVD player focus control loop 
is considered. The JITTERBUG model of the system 
is shown in Figure 1. The plant G(s) is given by 
a resonant sixth order continuous-time model of a 
DVD focus servo which has been obtained by system 
identification. The plant should be controlled by a 
discrete-time LQG controller with a sampling period 
of h seconds. The system H l ( z )  = 1 represents a 
periodic sampler, while the system Hz(z )  = H ( z )  
describes the control algorithm and the actuator. 
There is both process noise and measurement noise. 
The sampler is executed a t  the beginning of each 
period. Then there is a random delay r until the 
control signal is calculated and actuated. The LQG 
controller is  designed to  compensate for the mean 
delay. To study the combined effect of delay and jitter, 
the probability distribution for r is given by a uniform 
distribution in the range [m-j/2, m+j/2], where m is 
the mean delay and j is the jitter. An example script 
showing the MATLAEI commands for a cost calculation 
is shown in Figure 5. 
A plot showing the cost as a function of the mean 
delay and the jitter is given in in Figure 6. We can 
see that, in this case, the controller is quite sensitive 
to jitter. Naturally, the results are dependent on all 
model and design parameters. With JITTERBUG, it is 
easy to evaluate the effects of delays and jitter exactly 
for any parameters without resorting to simulations. 

4.2 Lost Samples in Notch Filters 
Cleaning signals from disturbances using e.g. notch 
filters is important in many applications. In some 
cases these filters are very sensitive to lost samples 
due to the very narrow-band characteristics, and 
in real-time systems lost samples are sometimes 
inevitable. In this example JITTEFBUG is used to 
evaluate the effects of this problem on different filters. 

~ 
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load G; Load state-space model of the plant 
H1 = tf(l,l,-l); Define the sampler 
H2 = Iqgdasign(G,Q,Rl,R2,h,m); Design the controller 
N = in i t j i t t e rbug(de l ta ,h) ;  Set time-grain and period 
N = addtimingnode(N,l,Ptau,2); 
N = addtimingnode(N.2); 

Define timing node 1 
Define timing node 2 

N = addcontsys(N,l,G,3,Q,Ri,RZ); Add plant 
N = adddiscsys(N.2,Hi.l.1); Add sampler to node 1 
N = adddiscsys(N,3,H2,2.2); Add controller to node 2 

N = calcdynamics(N); Calculate internal dynamics 
Calculate the cost J I J = calccost(N): 

I . .  I 

Figure 5 An example MATLAB script showing the com- 
mands for a J m E R B U G  cost calculation. 

. .  . .  

Jitter (% of h) 0 -0 Mean delay (%of h) 

Figure 6 The cost of delay and jitter in the control loop. 
The controller is designed assuming a constant 
delay equal to the mean delay. 

The setup is as follows. A good signal x (modeled 
as low-pass filtered noise) is to be cleaned from an 
additive disturbance e (modeled as  band-pass filtered 
noise), see the signal spectra in Figure 7. A n  estimate 
i of the good signal should be found by applying a 
digital notch filter with the sampling interval h = 0.1 
to the measured signal r+e. Unfortunately, a fraction 
p of the measurements are lost. 
A JITTERBUG model of the system is shown in Figure 8. 
The signals x and e are generated by white noise being 
filtered through the continuous-time systems GI and 
Gz. The digital filter is represented as two discrete- 
time systems: Sump and Filter. The good signal is 
buffered in the system Delay and is compared to the 
filtered estimate in the system DiR. In the timing 
model, there is a probabilityp that the Sump system 
will not be updated. In that case, it i s  possible to 
execute a n  alternate version, FiZter(2), of the filter 
dynamics. 
Two different filters are compared. The first filter is 
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Figure 7: The spectral densities of the good signal x (full) 
and the disturbance e (dashed). 

f 

X 

Figure 8: JITTERBUG model of the notch filter: (a) signal 
model, (b) timing model. 

a n  ordinary second-order notch filter with two zeros 
on the unit circle. The same update equations are 
used regardless if a sample is available or not. The 
second filter is a second-order Kalman filter based on 
a simple model of the signal dynamics. In the case of 
lost samples, only prediction is performed in the filter. 
The spectral density of the estimation error f = x - i 
in the two filter cases is shown in Figure 9. It has 
been assumed that p = 10% of the samples are lost. 
It is seen that the ordinary notch filter performs well 
around the disturbance frequency while the lost sam- 
ples introduce a large error a t  lower frequencies. The 
time-varying Kalman filter is less sensitive towards 

' Frequency (radlsec) 

Figure 9 The spectral density of the error output 2 when 
10% of the samples are lost, using a notch filter 
(full) or a time-varying Kalman filter (dashed). 

lost samples and has a more even error spectrum. 
Overall, the variance of the estimation error is ahout 
40% lower in the Kalman filter case. 

6. Conclusion 

This paper has presented a MATLAB toolbox called JIT- 
TERBUG, which is used to compute a quadratic perfor- 
mance index for a real-time control system. The con- 
trol (or signal processing) system is described using 
a number of continuous-time and discrete-time lin- 
ear systems. A stochastic timing model with random 
delays is used to describe the execution of the sys- 
tem. Some of the things that can be investigated using 
the toolbox are delays, jitter, jitter compensation, lost 
samples, aborted computations, aperiodically sampled 
controllers, and multi-rate controllers. 
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