
Proceedings of the 41st IEEE
Conference on Deeisian aod Control
Las Vegas, Nevada USA, December 2002 WeA05-3

Jitterbug: A Tool for Analysis of Real-Time Control
Performance

Bo Lincoln and Anton Cervin
Department of Automatic Control

Lund Institute of Technology
Box 118, SE 221 00 Lund, Sweden
I l incoln , antonl0control . l t h . s e

Abstract

The paper presents JITTERBUG, a MATLAB-based tool-
box for real-time control performance analysis. The
control system is described using a number of con-
nected continuous-time and discrete-time linear sys-
tems driven by white noise. The control performance
is measured by a continuous-time quadratic cost func-
tion. A stochastic timing model is used to describe
when the different discrete-time systems are updated
during the control period. Building different models,
the tool makes it easy to investigate how the control
performance is affected by e.g. delay, jitter, lost sam-
ples, aborted computations, and jitter compensation.
Aperiodic and multi-rate controllers may also be stud-
ied. The tool is also capable of computing the spectral
densities of the different signals in the system.

1. Introduction

Controllers are often designed with little regard
for the real-time implementation. In the case of
continuous-time design, it is typically assumed that
the controller can be subsequently discretized and ex-
ecuted at a sufficiently high frequency. In the case of
discrete-time design, it is commonly assumed that the
computing platform can provide deterministic sam-
pling and that the task execution will introduce neg-
ligible or a t least constant computational delay.
In systems with limited computing resources (e.g.
embedded control systems), however, a combination
of slow sampling and other timing problems may
lead to significant performance degradation. Often,
the controller is implemented as a task in a (more
or less real-time) operating system, and the task
scheduling can introduce additional delays as well as
sampling and actuation jitter (depending on how the
110 is implemented). In real-time operating systems
which enforces hard deadlines, a control task may
be aborted before it has finished its computations
and produced a control signal. Networked control

systems are another source of timing problems. The
network can introduce delay and jitter, and messages
(measurement or control signals) may be lost.
To achieve good performance in systems with limited
computer resources, the constraints of the implemen-
tation must be taken into account a t design time.
Typically, trade-offs between different activities in the
system must be made. For instance, boosting the pri-
ority of one task will improve its responsiveness but
may introduce delay and jitter in other tasks. The pe-
riods of all tasks must be chosen such that the CPU is
not overloaded, and so on. Having a quality-of-service
measure which takes the timing effects into account
can be a help when allocating system resources to the
different tasks.
This paper presents a 1MATLAB-based toolbox called
JITTERBUG which facilitates the computation of a
quadratic performance criterion for a linear con-
trol system under various timing conditions. The
tool helps to quickly assert how sensitive a control
system is to delay, jitter, lost samples, etc, with-
out resorting to simulation. The tool is quite gen-
eral and can also be used to investigate for in-
stance jitter-compensating controllers, aperiodic con-
trollers, and multi-rate controllers. The toolbox is
built upon well-known theory. Its main contribu-
tion is to make it easy to apply this type of
stochastic analysis to a wide range of problems. The
toolbox and a reference manual are available at
ht tp: //W. cont ro l . l t h . se/-lincoln/ j i t terbug/
The analysis in this paper builds on jump linear sys-
tems, which were first studied in [3]. Discrete-time
jump linear systems are treated in e.g. [2]. Linear-
quadratic analysis and control of systems with ran-
dom network delays are studied in [4]. An alterna-
tive to analysis is simulation. The MATLAB/Simulink-
based tool TRUETIME [l] can be used for detailed co-
simulation of plant dynamics, control task execution,
and real-time scheduling of CPU and network.

0-7803-7516-5/02/$17.00 @2002 IEEE 1319

2. System Description

In JITTERBUG, a control system is described by two
parallel models: a signal model and a timing model.
A simple model of a computer-controlled system is
shown in Figure 1. The plant is described by the
continuous-time system G, and the controller is de-
scribed by two discrete-time systems, H I and H z .
The system H I could for instance represent a peri-
odic sampler, while Hz could represent the computa-
tion and actuation of the control signal. The associ-
ated timing model says that, at the beginning of each
control period, H I should first be executed (updated).
Then there is a (possibly random) delay ZI until Hz
is executed. This simple model could be used to inves-
tigate for instance the impact of delay and jitter on
control performance. We will return to this example
in Section 4.1.

I 1 I

Figure 1: A simple JITTERBUG model of a computer-
controlled system: (a) signal model, and (b) tim-
ing model.

2.1 Signal Model
The signal model consists of a number of inter-
connected continuous-time and discrete-time linear
systems driven by white noise.
A continuous-time system is described by

k , (t) = A x , (t) + B u (t) + u , (t)
Y (t) = Cxdt)

where A, B , and C are constant matrices, and U, is a
continuous-time white noise process with covariance'
RI,. The cost o f the system is defined a s

l T J, = lim - xT(t)Q,r,(t) dt
T-m T 1

where Qc is a positive semidefinite matrix.
A discrete-time system is described by

x d (t k + l) = @ X d (t k) f w t k) + U d (t k)

Y(&) = c x d (t k) f D U (t k) + e d (t k)

'By this we mean that vc has the spectral density 4(0) = &RI..

where @, r, C, and D may be time-varying matrices
(see below). The covariance of the discrete-time white
noise processes ud and ed is given by

The input signal U is sampled when the system is
updated, and the output signal y is held between
updates. The cost of the system is defined a s

where Qd is a positive semidefinite matrix. Note that
the update instants t k need not be equidistant in time,
and that the cost is defined in continuous time.
The total system is formed by appropriately connect-
ing the inputs and outputs of a number of continnous-
time and discrete-time systems. Throughout, MIMO
formulations are allowed, and a system may collect
its inputs from a number of other systems. The total
cost to be evaluated is summed over all continuous-
time and discrete-time systems:

J = J, + J d

2.2 Timing Model
The timing model consists of a number of timing
nodes. Each node can be associated with zero or
more discrete-time systems in the signal model which
should be updated when the node becomes active.
At time zero, the first node is activated. The first
node can be declared to be periodic (indicated by an
extra circle in the illustrations), which means that the
execution will restart in this node every h seconds.
This is useful to model periodic controllers and also
simplifies the cost calculations a lot, see Section 3.3.
Each node is associated with a time delay which
must elapse before the next node can become ac-
tive. (Ifunspecified, the delay is assumed to be zero.)
The delay can be used to model computational delay,
transmission delay in a network, etc. A delay is de-
scribed by a discrete-time probability density function

P r = (PZ(0) Pr(1) Pr(2) ... 1
where P,(i) represents the probability of a delay of
is seconds. The time grain 6 is a constant which is
specified for the whole model.

Node- and Time-Dependent Execution The
same discrete-time system may be updated in several
timing nodes. It is possible to specify different update
equations (i.e. different @, r, C and D matrices) in

1320

Figure 2: Alternative execution paths: (a) random choice
of path, and (b) choice of path depending on the
total delay from the first node.

the different cases. This can be used to model e.g.
a filter where the update equations look different de-
pending on whether a measurement value is available
or not. An example of this type is given in Section 4.2.

It is also possible to make the update equations
depend on the time since the first node became active.
This can be used to model e.g. jitter-compensating
controllers.

Alternatiue Execution Paths For some systems,
it is desirable to specify alternative execution paths
(and thereby multiple next nodes). In JITTERBUG, two
such cases are possible to model, see Figure 2:

(a) A vector n of next nodes can be specified with
a probabilityvector p. After the delay, node n(i)
will be activated with probabilityp(i). This can
be used to model e.g. a sample being lost with
some probability.

(b) A vector n of next nodes can be specified with a
time-vector t. If the total delay since the first
node exceeds t (i) , node n(i) will be activated
next. This can be used to model e.g. time-outs
and different compensation schemes.

Periodic us Aperiodic Systems For periodic sys-
tems (i.e., for systems where the first timing node is
periodic), the cost J can be calculated algebraically.
The solver is fast and produces an exact solution. For
aperiodic systems, the cost must be computed itera-
tively until it converges (if ever). From this point of
view, periodic systems are clearly preferable.
In periodic systems, the execution is preempted if the
total delay T in the system exceeds the period h.
Any remaining timing nodes will be skipped. This
models a real-time system where hard deadlines
(equal to the period) are enforced and the control task
is aborted a t the deadline.
An aperiodic system can be used to model a real-time
system where the task periods are allowed to driR

~

1321

if there are overruns. It could also be used to model
e.g. a controller which samples "as fast as possible"
instead of waiting for the next period.

3. Internal Workings

Inside JITTERBUG, the states and the cost are consid-
ered in continuous time. The inherently discrete-time
states, e.g. in discrete-time controllers or filters, are
treated as continuous-time states with zero dynamics.
This means that the total system can be written as

k (t) = Ax(t) + w (t) (2)

where x collects all the states in the system, and w is
continuous-time white noise process with covariance
1. To model the discrete-time changes of some states
as a timing node n is activated, the state is instanta-
neously transformed by

x (t +) = E,x(t) + e.(t)

where e, is a discrete-time white noise process with
covariance W,.
The total cost (1) for the system can be written as

J = T-m lim - T xT(t)&(t)dt (3) I'
where 6 is a positive semidefinite matrix.

3.1 Sampling the System
JITTERBUG relies on discretized time to calculate the
variance of the states and the cost. No approximations
are involved, however. Sampling the system (2) with a
period of 6 (the time-grain in the delay distributions)
gives

where the covariance of U is R, and the cost (3)
becomes

z(k6 + 6) = @x(k6) + u(k6) (4)

r = I O 0.1 0.2 0.3 0.41 Continuous dynamics

w 0.4 0.3 0.2 0 1

Figure 3 A random delay (above) modeled as a jump lin-
ear system (below), where the delay is repre-
sented by additional Markov nodes in between
the timing nodes.

or, equivalently, from

and

M11 ME M13
M21 MZZ M23 =exp 0 -A RT

M32 M331 ([f 1')
so that

@ = P22

Q = PL%
R = MZM23

q = tr(QMj%)

3.2 Timing Representation
As time is discretized, we can transform the system
description into a jump linear system, where the
Markov state represents the current timing state of
the system. Each timing node is represented by one
Markov node. In between timing nodes additional
Markov nodes representing the delay are inserted as
illustrated in Figure 3.
Consider following one path in the Markov chain.
For each node which is not a timing node, only
the continuous states of the system change. In each
time-step, they evolve as in (4), and thus the state
covariance P(k6) = E { x (k 6) x T (k 6) } evolves as

P(k6 + 6) = @P(kS)@T + R
At each timing node n, the system is additionally
transformed as in (3),

P(&s+) = E"P(~s)E,T + w,
where W, is the covariance of the discrete-time noise
e , (kS) in node n. See Figure 4 for an illustration.
Combining the above, we define @" as

.\... -
\ -._

+ discrete dynamics

Figure 4: The continuous-time dynamics is active between
all Markov nodes, whereas the discrete-time
dynamics is activated only before a timing node.

@ if n is not a timing node
*n = { E n @ if n is a timing node

and similarly R, as

R if n is not a t imiig node

R " = { E,RE,T + W, if n is a timing node

3.3 Calculating Variance and Cost
Now consider all possible Markov states simultane-
ously. Let xn(k6) he the probability of being in Markov
state n a t time k6, and let P, (k6) be the covariance of
the state if the system is in Markov state n at time k6.
Furthermore, let the transition matrix of the Markov
chain be 6, such that

n(k6 + 6) = o x (k 6)

The state covariance then evolves as

P,(k6+6) = Ca,,xi(KG)(@,Pj(ks)@~+R,) (5)

and the immediate cost at time k6 is calculated as

For systems without a periodic node, equation (5)
must he iterated until the cost and variance con-
verge. For periodic systems, the Markov state always
returns to the periodic timing node every hl6 time
steps. As equation (5) is affine in P, we can fmd the
stationary covariance PI (00) in the periodic node by
solving a linear system of equations. The total cost is
then calculated over the timesteps in one period. The
toolhox returns the cost J = 00 if the system is not
mean-square stable.

3.4 Calculating Spectral Densities
For periodic systems, the toolhox also computes the
discrete-time spectral densities of all outputs a s oh-
served in the periodic timing node. The spectral den-
sity of an output y is defined as

l r n
C Y (U) = ry(k)e- ikm

k=-m

1322

The covariance function rr (k) is given by

where 6 is the average transition matrix over a
period, and q(m) is the stationary covariance in the
periodic node. The spectral density is returned as a
linear system F (z) such that @y(o) = F(e'").

4. Examples

4.1 Delay and Jitter in a D M Controller
Delays are a common problem in real-time control
systems. In this example we examine the effect of
randomly time-varying delays, or jitter. Generally, it
is straight-forward to compensate for a constant delay,
while jitter compensation is a harder issue.
In this example a DVD player focus control loop
is considered. The JITTERBUG model of the system
is shown in Figure 1. The plant G(s) is given by
a resonant sixth order continuous-time model of a
DVD focus servo which has been obtained by system
identification. The plant should be controlled by a
discrete-time LQG controller with a sampling period
of h seconds. The system H l (z) = 1 represents a
periodic sampler, while the system Hz(z) = H (z)
describes the control algorithm and the actuator.
There is both process noise and measurement noise.
The sampler is executed a t the beginning of each
period. Then there is a random delay r until the
control signal is calculated and actuated. The LQG
controller is designed to compensate for the mean
delay. To study the combined effect of delay and jitter,
the probability distribution for r is given by a uniform
distribution in the range [m-j/2, m+j/2], where m is
the mean delay and j is the jitter. An example script
showing the MATLAEI commands for a cost calculation
is shown in Figure 5.
A plot showing the cost as a function of the mean
delay and the jitter is given in in Figure 6. We can
see that, in this case, the controller is quite sensitive
to jitter. Naturally, the results are dependent on all
model and design parameters. With JITTERBUG, it is
easy to evaluate the effects of delays and jitter exactly
for any parameters without resorting to simulations.

4.2 Lost Samples in Notch Filters
Cleaning signals from disturbances using e.g. notch
filters is important in many applications. In some
cases these filters are very sensitive to lost samples
due to the very narrow-band characteristics, and
in real-time systems lost samples are sometimes
inevitable. In this example JITTEFBUG is used to
evaluate the effects of this problem on different filters.

~

1323

load G; Load state-space model of the plant
H1 = tf(l,l,-l); Define the sampler
H2 = Iqgdasign(G,Q,Rl,R2,h,m); Design the controller
N = in i t j i t t e rbug(de l ta ,h) ; Set time-grain and period
N = addtimingnode(N,l,Ptau,2);
N = addtimingnode(N.2);

Define timing node 1
Define timing node 2

N = addcontsys(N,l,G,3,Q,Ri,RZ); Add plant
N = adddiscsys(N.2,Hi.l.1); Add sampler to node 1
N = adddiscsys(N,3,H2,2.2); Add controller to node 2

N = calcdynamics(N); Calculate internal dynamics
Calculate the cost J I J = calccost(N):

I . . I

Figure 5 An example MATLAB script showing the com-
mands for a J m E R B U G cost calculation.

. . . .

Jitter (% of h) 0 -0 Mean delay (%of h)

Figure 6 The cost of delay and jitter in the control loop.
The controller is designed assuming a constant
delay equal to the mean delay.

The setup is as follows. A good signal x (modeled
as low-pass filtered noise) is to be cleaned from an
additive disturbance e (modeled as band-pass filtered
noise), see the signal spectra in Figure 7. A n estimate
i of the good signal should be found by applying a
digital notch filter with the sampling interval h = 0.1
to the measured signal r+e. Unfortunately, a fraction
p of the measurements are lost.
A JITTERBUG model of the system is shown in Figure 8.
The signals x and e are generated by white noise being
filtered through the continuous-time systems GI and
Gz. The digital filter is represented as two discrete-
time systems: Sump and Filter. The good signal is
buffered in the system Delay and is compared to the
filtered estimate in the system DiR. In the timing
model, there is a probabilityp that the Sump system
will not be updated. In that case, it i s possible to
execute a n alternate version, FiZter(2), of the filter
dynamics.
Two different filters are compared. The first filter is

10-1 100 10'
Frequency (radlssec)

Figure 7: The spectral densities of the good signal x (full)
and the disturbance e (dashed).

f

X

Figure 8: JITTERBUG model of the notch filter: (a) signal
model, (b) timing model.

a n ordinary second-order notch filter with two zeros
on the unit circle. The same update equations are
used regardless if a sample is available or not. The
second filter is a second-order Kalman filter based on
a simple model of the signal dynamics. In the case of
lost samples, only prediction is performed in the filter.
The spectral density of the estimation error f = x - i
in the two filter cases is shown in Figure 9. It has
been assumed that p = 10% of the samples are lost.
It is seen that the ordinary notch filter performs well
around the disturbance frequency while the lost sam-
ples introduce a large error a t lower frequencies. The
time-varying Kalman filter is less sensitive towards

' Frequency (radlsec)

Figure 9 The spectral density of the error output 2 when
10% of the samples are lost, using a notch filter
(full) or a time-varying Kalman filter (dashed).

lost samples and has a more even error spectrum.
Overall, the variance of the estimation error is ahout
40% lower in the Kalman filter case.

6. Conclusion

This paper has presented a MATLAB toolbox called JIT-
TERBUG, which is used to compute a quadratic perfor-
mance index for a real-time control system. The con-
trol (or signal processing) system is described using
a number of continuous-time and discrete-time lin-
ear systems. A stochastic timing model with random
delays is used to describe the execution of the sys-
tem. Some of the things that can be investigated using
the toolbox are delays, jitter, jitter compensation, lost
samples, aborted computations, aperiodically sampled
controllers, and multi-rate controllers.

References

111 D. Henriksson, A. Cervin, and EL-E. kz6n. "Trne-
time: Simulation of control loops under shared
computer resources." In hoceedings of the 15th
FAG World Congress on Automatic Control,
Barcelona, Spain, July 2002.

[Z] Y. Ji, H. Chizeck, X Feng, and K. Loparo. "Sta-
bility and control of discrete-time jump linear
systems." Control-lBeory and Advanced Applica-
tions, 22, pp. 247-270,1991.

[31 N. Kraswskii and E. Lidskii. "Analytic design of
controllers in systems with random attributes, I,
II, 111." Automation and Remote Control, 22S11,
pp. 1021-1025,1141-1146,1289-1294,1961.

(41 J. Nilsson. Real-lYme Control Systems with De
lays. PhD thesis ISRN LUTFDZ/TFRT--lO49--SE,
Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden, January 1998.

1324

