Rob Janssen

Embedded Motion Control 2013

Technische Universiteit
Eindhoven
University of Technology

Sector Contraction

Where innovation starts

TU/

Introduction

Relevant study material

"Artificial Intelligence: A Modern Approach"

- Written by Stuart Russell and Peter Norvig
- Book available at <u>http://aima.cs.berkeley.edu/</u>
- Related free online AI courses available at <u>http://www.udacity.com</u>
 - > <u>cs271:</u> Introduction to Artificial Intelligence
 - > <u>cs373</u>: Artificial Intelligence for Robotics

3rd edition

Technische Universiteit **Eindhoven** University of Technology

1st edition

Department of Mechanical Engineering

Introduction

What is an Intelligent Agent?

Department of Mechanical Engineering

What is an Intelligent Agent?

Department of Mechanical Engineering

What is an Intelligent Agent?

"An autonomous entity that <u>acts</u> upon <u>sensed</u> information through an <u>intelligent program</u>"

Department of Mechanical Engineering

What is an Intelligent Agent?

"An autonomous entity that <u>acts</u> upon <u>sensed</u> information through an <u>intelligent program</u>, enabling the entity to make rational (i.e. <u>optimal</u>) decisions"

Department of Mechanical Engineering

Introduction

What is an Intelligent Agent?

"An autonomous entity that <u>acts</u> upon <u>sensed</u> information through an <u>intelligent program</u>, enabling the entity to make rational (i.e. <u>optimal</u>) decisions"

Qualitative measure designed by Alan Turing in 1950: the <u>Turing Test</u>

Introduction

What is an Intelligent Agent?

The Web

"An autonomous entity that <u>acts</u> upon <u>sensed</u> information through an <u>intelligent program</u>, enabling the entity to make rational (i.e. <u>optimal</u>) decisions"

Concept of an Intelligent Agent used in many fieldsFinanceMedicalAutomotive

Department of Mechanical Engineering

Department of Mechanical Engineering

Basic concepts

Basic concepts used in Intelligent Agent design

Department of Mechanical Engineering

Basic concepts used in Intelligent Agent design

Environment types

Department of Mechanical Engineering

Basic concepts used in Intelligent Agent design

Environment types

>Agent types

Department of Mechanical Engineering

Department of Mechanical Engineering

Fully versus partially observable

> e.g. chess versus poker

Fully versus partially observable

- > e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Fully versus partially observable

- > e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Deterministic versus stochastic

e.g. chess versus backgammon

Fully versus partially observable

- > e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball
- **Deterministic versus stochastic**
 - e.g. chess versus backgammon
- Discrete versus continuous
 - e.g. chess versus darts

Fully versus partially observable

- > e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball
- **Deterministic versus stochastic**
 - e.g. chess versus backgammon
- Discrete versus continuous
 - e.g. chess versus darts
- **Competitive versus collaborative**
 - ➢ e.g. chess versus Guitar Hero

Fully versus partially observable

- ➢ e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Deterministic versus stochastic

- e.g. chess versus backgammon
- **Discrete versus continuous**
 - e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

Fully versus partially observable

- ➤ e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Deterministic versus stochastic

- e.g. chess versus backgammon
- **Discrete versus continuous**
 - > e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

[/] partially observable

Fully versus partially observable

➢ e.g. chess versus poker

Static versus dynamic

e.g. chess versus table foosball

Deterministic versus stochastic

e.g. chess versus backgammon

Discrete versus continuous

e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

partially observablestatic

Fully versus partially observable

➢ e.g. chess versus poker

Static versus dynamic

e.g. chess versus table foosball

Deterministic versus stochastic

e.g. chess versus backgammon

Discrete versus continuous

e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

partially observable

static

deterministic

Fully versus partially observable

- ➢ e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Deterministic versus stochastic

- e.g. chess versus backgammon
- **Discrete versus continuous**
 - e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

- partially observable
- static
- deterministic
- ✓ discrete

Fully versus partially observable

- ➢ e.g. chess versus poker
- **Static versus dynamic**
 - e.g. chess versus table foosball

Deterministic versus stochastic

- e.g. chess versus backgammon
- **Discrete versus continuous**
 - e.g. chess versus darts

Competitive versus collaborative

> e.g. chess versus Guitar Hero

Battleship?

- partially observable
- static
- deterministic
- discrete
- competitive

Department of Mechanical Engineering

Simple reflex agent

Acts upon <u>current percept only</u>, ignoring percept history (e.g. anti-slipsystem in a car)

Simple reflex agent

Acts upon <u>current percept only</u>, ignoring percept history (e.g. anti-slipsystem in a car)

Model based reflex agent

Acts upon a <u>sequence of percepts</u> combined with an <u>environment</u> <u>model</u> (e.g. radar-guided missiles). Deals with partial observability

Department of Mechanical Engineering

Model based reflex agent

Acts upon a <u>sequence of percepts</u> combined with an <u>environment</u> <u>model</u> (e.g. radar-guided missiles). Deals with partial observability

Goal based agent

Acts upon <u>percepts</u>, an <u>environment model</u> and a long term <u>goal</u> (e.g. Deep Blue chess computer)

Goal based agent

Acts upon <u>percepts</u>, an <u>environment model</u> and a long term <u>goal</u> (e.g. Deep Blue chess computer)

Utility based agent

Acts upon <u>percepts</u>, an <u>environment model</u>, a long term <u>goal</u> and a <u>cost function</u> (e.g. navigation systems)

Utility based agent

Acts upon <u>percepts</u>, an <u>environment model</u>, a long term <u>goal</u> and a <u>cost function</u> (e.g. navigation systems)

16-10-2013

PAGE 37

Learning agent

Acts upon <u>percepts</u>, an <u>environment model</u>, a long term <u>goal</u>, a <u>cost</u> <u>function</u> and a <u>performance improvement algorithm</u> (e.g. humans)

Department of Mechanical Engineering

Learning agent

Acts upon percepts, an environment model, a long term goal, a cost function and a performance improvement algorithm (e.g. humans)

T

Department of Mechanical Engineering

Department of Mechanical Engineering

Engineer first needs to classify the according <u>environment type</u>

Department of Mechanical Engineering

Engineer first needs to classify the according <u>environment type</u>

Based on this classification, a suitable <u>agent type</u> needs to be selected

Engineer first needs to classify the according <u>environment type</u>

- Based on this classification, a suitable <u>agent type</u> needs to be selected
- Resulting in a required set of agent type <u>components</u>

Environment type

Department of Mechanical Engineering

Environment type

Fully or partially observable?

Department of Mechanical Engineering

Environment type

Fully or partially observable?

Department of Mechanical Engineering

Environment type

- Fully or partially observable?
- Static or dynamic?

Department of Mechanical Engineering

Environment type

- Fully or partially observable?
 - Static or dynamic?

Department of Mechanical Engineering

- Fully or partially observable?
- Static or dynamic?
 - > Deterministic or stochastic?

- Fully or partially observable?
 - Static or dynamic?
 - Deterministic or stochastic?

- Fully or partially observable?
- Static or dynamic?
 - Deterministic or stochastic?
 - Discrete or continuous?

- Fully or partially observable?
 - Static or dynamic?
 - Deterministic or stochastic?
 - **Discrete or continuous?**

- Fully or partially observable?
- Static or dynamic?
 - Deterministic or stochastic?
 - Discrete or continuous?
- Competitive or collaborative?

- Fully or partially observable?
- Static or dynamic?
- Deterministic or stochastic?
 - Discrete or continuous?
- Competitive or collaborative?

Agent type

Department of Mechanical Engineering

Agent type

Simple reflex agent?

> What could be PICO's reflexes?

Department of Mechanical Engineering

- Simple reflex agent?
 - > What could be PICO's reflexes?
- Model based reflex agent?
 - What can be modeled?

- Simple reflex agent?
 - > What could be PICO's reflexes?
- Model based reflex agent?
 - What can be modeled?
- Goal based agent?
 - > What is PICO's goal?

- Simple reflex agent?
 - > What could be PICO's reflexes?
- Model based reflex agent?
 - What can be modeled?
- Goal based agent?
 - > What is PICO's goal?
- Utility based agent?
 - What is a suitable cost function?

- Simple reflex agent?
 - > What could be PICO's reflexes?
- Model based reflex agent?
 - What can be modeled?
- Goal based agent?
 - > What is PICO's goal?
- Utility based agent?
 - What is a suitable cost function?
- Learning agent?
 - > What can be learned?

Department of Mechanical Engineering

Decide for your own!

Department of Mechanical Engineering

Decide for your own!

Find a suitable trade-off between agent <u>performance</u> and agent <u>complexity</u>

Department of Mechanical Engineering

Decide for your own!

- Find a suitable trade-off between agent <u>performance</u> and agent <u>complexity</u>
- Assure that your program is intelligent but still comprensible
 - > Otherwise debugging might be impossible

Decide for your own!

- Find a suitable trade-off between agent performance and agent complexity
- Assure that your program is intelligent but still comprensible
 - > Otherwise debugging might be impossible
- Methods for optimization and learning algorithms can be found in Chapters 18 to 21 (3rd edition)

Department of Mechanical Engineering