TU/e Technische Universiteit Eindhoven University of Technology

Final Presentation

Aditya Kamath (0976155) Alexis Siagkris-Lekkos (0980790) Amrith Vel Arul Kumar (0976940) Ayush Kumar (0976467) Mahmoud Al Abbassi (0978245)

Software Design and Flow

Main Functional Loop

VISUALIZATION: Detecting and Drawing Lines

- Hough Transform
 - Plotting LRF data (mapping \rightarrow visualization)
 - Probabilistic Hough
 - Remove duplicate lines (filtering)
 - Draw
- End objective
 - Mapping primitives
 - Calculate Target
 - Navigation to desired set point

80	Image	
		×

• Consider only the measurements inside the circle

• Search for gaps/ turns

• Search for gaps/ turns

- Determine pattern
- Calculate target for each turn

STRATEGY: Choosing a Target

- Random walk ... but not totally random
- At dead-ends
 - STOP !
 - Ask for the door to be opened
 - Drive if door opens, otherwise take a 180 degree turn and drive
- To prevent getting stuck in a loop
 - Count if the robot takes 4 left (or right) turns consecutively
 - If yes, try to take the first alternate path available
- In open spaces
 - When no targets are detected, target is set as a point 10 cm in front of the robot, with the exception of a dead end
 - The potential fields drive the robot to the first opening

MOTION: Drive to Target

- Attractive and Repulsive Potential Fields
- Robot repelled by obstacles, attracted towards target
- Both forces dependent on distance of the robot to the obstacles/target
- The robot moves in direction of the resultant of the repulsive and attractive forces

Progress

- Potential field method implemented and tested
 - Target set as 10 cm in front of the robot
 - Tuned for almost all maze variations
- Hough line detection
 - Visualization tested on stationary robot
 - Hough lines generated and extra lines removed

To be done

- Test scheduled on 02/06/2016 (Thursday)
- Test option 1 of target detection
- After test, work on:
 - Strategy (Random walk)
 - A more robust algorithm to find targets using Hough lines (pattern recognition)
 - Integrate functions
 - Hope to test once again before the competition

Things we've learned

- Writing modular/structured code
 - Modules need to be tested individually
- Testing on the robot != Testing on simulator
- There is no escape from "tuning"
 - Less magic numbers = more robust functioning
- It's not necessarily all about "control"

Thank you

Questions? Remarks?

Suggestions?

