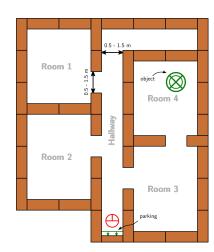
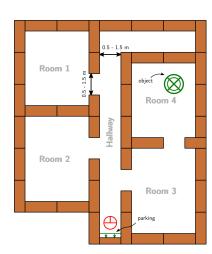
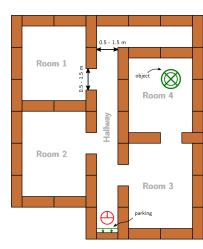

EMC 2018 Tooling and Infrastructure

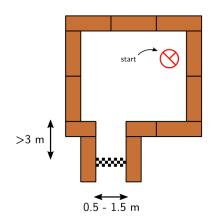

Wouter Kuijpers

Eindhoven University of Technology Department of Mechanical Engineering


May 2, 2018

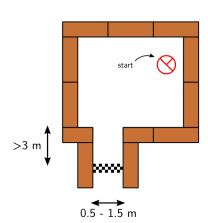

- You have to:
 - ► try to be as fast as possible

- You have to:
 - try to be as fast as possible
- You can use:
 - The Laser Range Finder to detect walls and doors
 - The encoder data from the wheels
 - ► The control effort signal to notice touches
 - ► The (high level) hint we will give you!



- You have to:
 - try to be as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls and doors
 - ► The encoder data from the wheels
 - ► The control effort signal to notice touches
 - ► The (high level) hint we will give you!
- ▶ Important Dates:
 - ► Final Presentations: June 6
 - ► Competition Day: June 13

Intermediate Assignment


Escape Room Competition: let a robot escape the room through the door.

Intermediate Assignment

Escape Room Competition: let a robot escape the room through the door.

- You have to:
 - ► try to be as fast as possible
- You can use:
 - ► The Laser Range Finder to detect walls
 - The encoder data from the wheels
 - ► The control effort signal to notice touches
- ► Competition day: May 23

Simple, right?

Simple, right?

Don't worry, we supply you with some tools to get you started!

- ▶ PICO is the robot you have to use!
- ▶ Telepresence Robot from Aldebaran
 - ► Robot type: Jazz

- ▶ PICO is the robot you have to use!
- ► Telepresence Robot from Aldebaran
 - ► Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - ► Wheel encoders (odometry)
 - ▶ 170° wide-angle camera

- ▶ PICO is the robot you have to use!
- ► Telepresence Robot from Aldebaran
 - Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - ► Wheel encoders (odometry)
 - ▶ 170° wide-angle camera
- Actuators:
 - ► Holonomic base (omni-wheels)
 - ▶ Pan-tilt unit for head

- ▶ PICO is the robot you have to use!
- ► Telepresence Robot from Aldebaran
 - ► Robot type: Jazz
- Sensors:
 - ► Laser Range Finder (LRF)
 - Wheel encoders (odometry)
 - ▶ 170° wide-angle camera
- Actuators:
 - ▶ Holonomic base (omni-wheels)
 - ▶ Pan-tilt unit for head
- Computer:
 - ▶ Intel I7
 - Running Ubuntu 16.04

- ► Robot Operating System
 - ► Open-source meta-operating system for robots

- ► Robot Operating System
 - ▶ Open-source meta-operating system for robots

► Won't be using it!

- ► Robot Operating System
 - Open-source meta-operating system for robots

- ► Won't be using it!
- ► Instead, we will provide our own 'software layer'
 - It is simpler to understand, and 'cleaner' to use

- ► Robot Operating System
 - Open-source meta-operating system for robots

- ▶ Won't be using it!
- ► Instead, we will provide our own 'software layer'
 - ▶ It is simpler to understand, and 'cleaner' to use
- However, you are still allowed to use ROS!

Ubuntu

Development of PICO's software will be done in Ubuntu.

Ubuntu

Development of PICO's software will be done in Ubuntu.

- Linux-based operating system
- ▶ Use version **16.04** (not 14.10, 15 or 17!)
- ▶ 32- and 64-bit (64-bit recommended)

Ubuntu

Development of PICO's software will be done in Ubuntu.

- ► Linux-based operating system
- ▶ Use version **16.04** (not 14.10, 15 or 17!)
- ▶ 32- and 64-bit (64-bit recommended)
- Easy dual boot installation with e.g.,
 Windows
- Download: see tutorial!
 - ► Any problems? → Check the wiki.
 - No info? → Send us an email.

$$C++$$

- ▶ We will use C++ as programming language
- ► C++ is object-oriented C
 - ▶ "C with Classes"
 - Encapsulate data and functionality within objects

C++

- ▶ We will use C++ as programming language
- ► C++ is object-oriented C
 - ▶ "C with Classes"
 - Encapsulate data and functionality within objects
- ▶ It is a powerful but complex programming language.
- However, we provide you the EMC framework to get you started

Creating code: Qt Creator

- ► Integrated Development Environment
 - Advanced code editor
- Many advantages over 'simple editors':
 - Syntax highlighting
 - Code completion
 - Visual compiler feedback
 - Static code checking
 - Refactoring tools
 - Parenthesis matching

Git Version Control

- Version Control System:
 - ► 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - ▶ (Like Dropbox)

Git Version Control

- Version Control System:
 - ► 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - (Like Dropbox)
- Maintains version history
- Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line

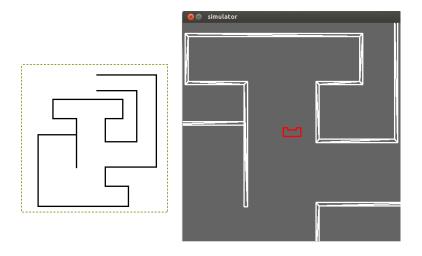
Git Version Control

- Version Control System:
 - 'Manages files and directories, and the changes made to them, over time'
- Used to store and maintain your code on the server
 - (Like Dropbox)
- Maintains version history
- ▶ Is distributed
 - You always have the full history on your pc
 - You can always go back to a version, show differences, even when off-line
- More info on the Wiki

You will have to work with the real robot, but we only have one. Therefore:

- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!

- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)


- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- Can easily create test environments using height maps

- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- ► Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot

- You will have to work with the real robot, but we only have one. Therefore:
- ► Test time is limited and has to be scheduled, see Wiki!
- ► PICO Simulator:
 - Simulates:
 - Sensors (Laser, odometry)
 - Actuators (Base)
 - Environment (maze)
- Can easily create test environments using height maps
- Integrates well with our provided software
 - If your software runs in the simulator, it runs on the robot
 - ▶ This does not guarantee that it will also work...

You still need to test on the real system!

Example

- ► Full Example: from requirements, through Task-Skill-Motion to Software Executable.
- (far) from perfect!
- Focus on decoupling parts of functionality, explicitly in the code.
- ▶ Will be released this week! Check the tutorial page!

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - ▶ Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - ▶ Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account
- Group pages on EMC Wiki:
 - Each group gets its own page
 - ► Update at least weekly

Wiki

- ► EMC Wiki:
 - http://cstwiki.wtb.tue.nl /index.php?title=Embedded_Motion_Control
 - Info on practical assignment, installation, getting started
 - Frequently Asked Questions
 - ► Log-in: student account
- Group pages on EMC Wiki:
 - ► Each group gets its own page
 - ► Update at least weekly
- Overall use:
 - Everyone can edit
 - ▶ If you see a mistake: correct it
 - ▶ If you had a problem and know how to fix it: add it

Recap

► Robot: PICO

► OS: Ubuntu 16.04

▶ Programming language: C++

Code editor: Qt Creator

Version control: git

► Simulation: PICO simulator

► Documentation: Wiki

That should get you started!

Groups

Each group will be supervised by a tutor:

1. Yanick Douven

2. Wouter Houtman

3. RUVU

4. Bob

5. Bob & Hao

6. Marzieh

7. Wouter Kuijpers

8. Hao

9. Marzieh

10. René & Herman

It is your responsibility to get in touch with your tutor (see Wiki)

What should I do now?

- ► Check the Wiki & Finish the Tutorials:
 - http://cstwiki.wtb.tue.nl/index.php?title= Embedded_Motion_Control

What should I do now?

- Check the Wiki & Finish the Tutorials:
 - http://cstwiki.wtb.tue.nl/index.php?title= Embedded_Motion_Control
- Send an email to your tutor:
 - to schedule the first meeting,
 - with one username for access to your Git, (tutorial)

What should I do now?

- Check the Wiki & Finish the Tutorials:
 - http://cstwiki.wtb.tue.nl/index.php?title= Embedded_Motion_Control
- Send an email to your tutor:
 - to schedule the first meeting,
 - with one username for access to your Git, (tutorial)
- With your group:
 - schedule a try-out test with PICO, next week (7-8-9 May), see test scheme on Wiki!

Groups (1)

Group 1	Group 2	Group 3	Group 4
0914013	▶ 1275801	▶ 0861750	1286560
▶ 0924842	▶ 1037038	▶ 0885514	▶ 0852908
► 1279491	▶ 0848638	▶ 0883056	▶ 0774811
▶ 1031018	▶ 0899061	▶ 0896947	1 032743
▶ 0898396	▶ 0843128	▶ 0848904	• 0740573
▶ 1279602	▶ 0895324	▶ 0909434	▶ 0897675

Groups (2)

Group 5	Group 6	Group 7	Group 8
▶ 0847751	▶ 0896965	▶ 1022624	0817997
0897620	▶ 1036818	► 1279483	1 030747
▶ 0887636	0 486100	► 1279637	0890579
▶ 0903892	▶ 0912153	► 1275828	0892629
▶ 0810317	▶ 0778266	▶ 0886654	0859466
▶ 1019851	▶ 1280554	▶ 0833049	▶ 0885734

Groups (3)

Group 9

- **▶** 0892672
- **▶** 1283251 (?)
- **1279785**

Group 10

- ▶ 1020646
- **1283685**
- ▶ 1221543
- **▶** 0714775
- **0767539**