
Editor: Michael A. Gray, gray@american.edu

62	 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 ©2007 IEEE	 Computing in SCienCe & engineering

T E C h n o l o g I E S

Discrete event simulation
a review of simevents

By Michael A. Gray

A new entrant in the field of discrete event simulation systems, SimEvents has several desirable system features.
It still has some catching up to do in some areas, but SimEvents is particularly useful for existing Matlab and
Simulink users looking to construct complex hybrid systems of discrete/continuous processing.

D iscrete event simulation is
very effective in provid
ing quantitative results for

analyses of stochastic flow systems.
In a flow system, tasks enter and flow
through a graph of interconnected
servers, which perform various servic
es on the tasks. I use the term “task”
here in the broadest sense because the
things that flow through these systems
can be as diverse as humans flowing
through a bank, materials flowing
though a plant, or message packets
flowing through a communications
network. Given that the tasks usually
share servers, queues form to provide
a holding function for tasks waiting
for busy servers. The tasks exit the
system when all servicing is complete.
A stochastic flow system is one in which
the individual task entrance times and
service times aren’t deterministic; the
fact that we can describe them only in
the aggregate by statistical measures
implies a stochastic variation in the
queues, as well.

Researchers have developed discrete
event simulation systems (DESSs) to
assist in creating and running simula
tions, and several commercial packages
are available.1 MathWorks, the makers
of Matlab, have released a new entrant,
called SimEvents, a demonstration ver
sion of which I recently evaluated. To
ground my evaluation in something
concrete, I also contrasted the features
in SimEvents with those in the aca

demic version of Rockwell’s Arena sys
tem (www.arenasimulation.com).

I concentrated on system features
that I view as desirable in a DESS. Most
DESSs provide various ways to model
system components, but users often
prefer direct ways because they have
little time to master DESS concepts.
That said, I’ve tried to evaluate the in
direct ways of doing things, as well.

Desirable Features
I began by organizing desirable DESS
features; Table 1 shows my results (p.
64). The first two columns list the
categories and a further breakdown
by features. The third column labels
each feature (Xn, where X indicates
the feature category and n is an inte
ger) that I examine later. The last two
columns show the final evaluation
results for SimEvents. Due to space
limitations, I’ll restrict myself to re
marking on only those features that
might not be obvious.

In the environment category, rep-
lication tools (feature G4) serve model
builders’ needs for automatically
building large models. Manually con
structing a 10,000node network is so
tedious that it’s impossible without
tools for the job. Furthermore, these
replication tools should let users write
and execute a controlling program of
some kind—rather than forcing them
to manipulate by hand—leading to
replication under program control (G5)

for programmatically constructing
large numbers of similar servers and
channels.

Occasionally, modelers might want
a queue without an associated server,
perhaps for delay or storage purpos
es. In this case, the queue should be
an individual mechanism (Q6) rather
than rigidly attached to a server. Un
der the server category, multiplicity
(S5)—the ability to simultaneously
service multiple entities—is desir
able. We must have an adequate set
of logic and control (L1) mechanisms,
and we certainly must have condi-
tional testing (L2) mechanisms that
can sample an entity’s properties or
model conditions and route flows to
alternate paths. We need feedback (L3)
mechanisms to allow loopback paths
in the models, and there must also be
some communication (L4) means to
let model components send runtime
messages to each other to change
model operation.

An important requirement for any
DESS is to provide complexity con
trol devices for model builders. Given
that a moderately complex system can
easily overwhelm a model builder’s
ability to manage it, a DESS should
include abstraction (A1) mechanisms to
reduce complexity at different model
levels. Specifically, we want embed-
ding (A2) functionality to let us em
bed systems within other systems.
Model users need user control (U1)

november/DeCember 2007 63

mechanisms that require appropri-
ate skills (U2) for users who might
not be as knowledgeable as model
builders.

SimEvents Environment
SimEvents is installed as part of the
Simulink extension for Matlab, and it
appears in the Simulink environment
as a block library. SimEvents imme
diately meets important environment
requirements because it presents a
graphical drag-and-drop interface (G1,
G2) for assembling and using models.
The fact that it supplies its blocks in
the form of libraries (G3) satisfies an
other requirement. It’s disappointing,
though, that SimEvents has no repli
cation tools for building large models
and no runtime programmatic mech
anisms for assembling such models.

Entities
The SimEvents direct mechanism for
entities is also called entity (E1). The
eventbased or timebased entity gen
erators create entities based on object
blocks from the Generators|Entity
Generators library. The builder in
serts the generator blocks into the
model and, during model execution,
creates entities according to the condi
tions defined. The entities might have
both presupplied and builder-defined
properties (E4), called attributes, speci
fied for the entity class by means of
a parameter sheet. An attribute is a
name–value pair that can be defined
to supply an entity with a property.
This is a familiar approach to Arena
modelers because it uses an analogous
interface to define and create entities.

A SimEvents entity can be one of
two types: standard or blank (E3).
The standard type is presupplied with
two properties—the count attribute
indexes the entities as they’re gen
erated and serves as an identifier for

individual entities (E2); the priority
attribute (E6) is available for logic and
control. Model builders must define
any additional entity properties in
buildersupplied attributes. Because
the blank type has no presupplied
properties, all its properties must be
builderdefined. However, this only
minimally satisfies the requirement
for a builderdefinable entity type be
cause the builder must entirely define
the type via attributes, implying ad
ditional work. By comparison, Arena
lets builders define their own entity
types by supplying new names and
attribute sets. Such entity types then
become one of the available types in
the system.

The builder supplies the statisti
cal distribution, describing entity
creation times as a parameter for the
time-based entity generator (E5). The
presupplied distributions are

constant, for constant interar
rival time;
uniform, for randomly chosen
interarrival times uniformly dis
tributed between buildersupplied
minimum and maximum times; and
exponential, for randomly chosen
interarrival times distributed ac
cording to an exponential distribu
tion with a buildersupplied mean.

•

•

•

Builders can also use other distribu
tions by supplying the generator with
an externally defined sequence of inter
arrival times. Arena provides a much
richer set of directly available presup
plied distributions, so this is an area in
which we can hope for improvements
in future SimEvents releases.

Channels
The SimEvents direct mechanism
for providing channels is the connec-
tion line (C1), a unidirectional chan
nel between two blocks along which
entities or signals flow from the sup
plier block to the consumer block.
Constructed inside the modelbuild
ing graphical interface rather than
using a block from a library, connec
tion lines don’t have unique identi
fiers. SimEvents differentiates entity
flow from controlsignal flow by de
fining entity connection lines and
signal connection lines: entities flow
through a model along entity connec
tion lines, whereas signals propagate
around a model on signal connection
lines. A builder has no direct means
for defining a new connection type.
With no properties controlling band
width or speed, connection lines have
properties a model builder can use.
The Routing library provides blocks
that we can use to construct complex

About the editor

given that this is my first column as Technologies editor, I’d like to intro-
duce myself. While a physics graduate student at Penn State, I was intro-

duced to computing by writing Fortran II programs to simulate underwater
acoustic environments, and I’ve worked in some part of computing ever since.

I have a great fondness for simulation as a working technique, so it’s an
appropriate subject for my inaugural column. I first encountered simulation
languages in the 1970s in the form of Simscript for continuous simulation
and gPSS for discrete simulation. I’ve watched since then as these relatively
low-level, primitive facilities have grown into impressively rich and powerful
simulation systems such as Simulink and Arena. The underlying technologies
for these and other scientific computation uses have grown in ways I never
foresaw, and the expansion pace seems unabated, so it’s a real pleasure to
have the opportunity to help cover this area for our readership. Please feel
free to email me at gray@american.edu with your comments and sugges-
tions for column topics.

T E C h n o l o g I E S

64	 Computing in SCienCe & engineering

structures representing connections
with specified bandwidths and speeds.
This imposes an additional burden
on model builders, but it’s similar to
Arena’s treatment of connections.

Queues
The SimEvents direct mechanisms
for providing queues are the FIFO

(first in, first out), LIFO (last in, first
out), and priority queues (Q1), which
are in the Queues library. SimEvents
can provide other queue protocols
when builders combine priority queues
with server preemption (Q5). This dif
fers from Arena’s approach of pro
viding a single, customizable queue
datablock type for which we can alter

parameters to select the desired queue
protocol. SimEvents doesn’t provide
builderdefinable queue types in a
direct manner. We can control queue
size through the capacity parameter
(Q4), but no parameters control queue
logic for handling overflow. Instead,
the supplying block accomplishes that
by blocking output when the consum

Table 1. Summary of SimEvents evaluation.

Category Desirable features Label Direct Indirect

Environment Interactive, graphical g1 Yes

Drag-and-drop action g2 Yes
Customizable libraries g3 Yes
Replication tools g4 no
Replication under program control g5 no

Entity E1 Yes
Unique identifier E2 Yes
Customizable type E3 Minimal Yes
Customizable property list E4 Yes
Customizable creation statistics E5 Minimal Yes
Entity priority E6 Yes

Channel C1 Yes
Customizable type C2 no Yes
Customizable bandwidth C3 no Yes
Customizable speed C4 no Yes

Queue Q1 Yes
Customizable type Q2 no Yes
Customizable size Q3 Yes
Customizable priority policy Q4 Minimal Yes
Customizable overflow policy Q5 no Yes
Individual Q6 Yes

Server S1 Yes
Customizable type S2 no Yes
Service time S3 Minimal Yes
Customizable service time statistics S4 no Yes
Multiplicity S5 Yes
Customizable state S6 no Yes
Customizable state statistics S7 no Yes
Customizable scheduling S8 no Yes

logic, control l1
Testing l2 Yes
Feedback l3 Yes
Communication l4 Yes

Abstraction A1 Yes
Embedding A2 Yes

User control U1 Yes
Appropriate skills U2 Yes
graphical display U3 Yes
Client presentation U4 no
Summary reports U5 no Yes
Detail reports U6 no Yes
Statistical analysis tools U7 Minimal Yes

november/DeCember 2007 65

ing block (the queue) is full. Queues
are standalone mechanisms (Q6).

Servers
The SimEvents direct mechanisms for
providing servers are the infinite server,
N-server, and single server (S1) from the
Servers library. The application doesn’t
provide builderdefinable server types.
We can define a fixed service time inter
nal to a server (S3), but there’s no direct
means for specifying a varying service
time within the server itself. This dif
fers from Arena’s Process module, in
which server time and statistical varia
tion is completely definable. In Sim
Events, the only ways to define varying
service times are by indirect, external
mechanisms. The builder can specify
server multiplicity through the server
block used or through the number pa
rameter for an Nserver (S5). Because
SimEvents doesn’t supply servers with
state directly, builders must create this
property indirectly. The application
also offers no way to directly provide
serverscheduling policies.

Logic and Control
SimEvents has an extremely rich set
of direct mechanisms for providing
logic and control. First, it offers the
signal (L3) for runtime communica
tion between model blocks. Signals
propagate along signal connections
from block to block and carry values
encoding information. Most blocks
in SimEvents accept appropriate sig
nals on input and provide for send
ing signals on output. With other
control mechanisms, such as enabled
gate, release gate, and replicate, these
signals give model builders a set of
control mechanisms. Testing mecha
nisms consist of the input and output
switches (L1), which let the builder test
model conditions or entity properties
and route entities to alternate paths.

The path combiner (L2) provides the
loopback mechanism by combining
multiple input streams of entities into
single output streams. This lets us
loop an output stream from a down
stream block back into an upstream
block as input.

Abstractions
SimEvents includes three powerful
abstraction mechanisms: the subsys-
tem, masked subsystem, and discrete
event subsystem (A1). The first two are
in the underlying Simulink environ
ment and let the builder create subsys
tems embedded in a system. In turn,
they can have embedded lower-level
subsystems (A2) as their components.
The subsystem block is analogous to
Arena’s subsystem module. SimEvents
provides a more powerful abstraction
in the masked subsystem block, which
not only combines blocks into visually
simplified single blocks but also lets
model builders use masks to set vari
ables within the new abstraction from
outside the structure. The discrete
event subsystem lets the builder cre
ate structures that react to events in a
precisely timed manner.

User Customization and Control
Users might need to customize a
completed simulation model for a
particular system before running the
analysis. SimEvents provides a display
that lets users set important run pa-
rameters such as start and stop times
(U1). In addition, model builders can
encapsulate the entire system in a
single masked subsystem and provide
all user controls for the internals in a
mask. This makes a very userfriend
ly customization and control mecha
nism that doesn’t require detailed
understanding of SimEvents model
ing (U2). This is an improvement
over Arena’s user facilities, in which

users have to customize modules in a
more complicated way.

Graphical Displays and Reporting
SimEvents provides graphical displays
for users through its interactive execu
tion capability coupled with the scope
block (U3). The scope block receives
data during a run and graphs impor
tant simulation information versus
time in an oscilloscopelike manner.
Model builders can use display blocks
to display the running value of sig
nals and statistical summary informa
tion as numbers, but unlike Arena,
SimEvents doesn’t offer the ability to
display entities flowing through the
graph. That’s a valuable tool for small
systems because a visual inspection of
the entity flow often reveals model er
rors and bottlenecks without the need
for a more exhaustive analysis. It’s also
very valuable for client presentation
because it lets the customer clearly fol
low how the system changes in time.

The reporting facilities in Sim
Events are disappointing. The system
includes no reporttype blocks, so
modelers must take the final data out
side the system and summarize it by
other means. This stands in contrast
to Arena, in which the production of
detailed, comprehensive reports is an
automatic part of model execution.

Statistical Tools
In this first release, the statistical
tools directly available in SimEvents
consist mainly of output signals from
blocks that report totals or time aver-
ages of relevant properties (U7). The
builder must often mathematically
process the output of these signals to
obtain other kinds of statistics, which
generally requires skills in Simulink
or Matlab programming.

An important issue in simulation is
ensuring that the results are statisti

T E C h n o l o g I E S

66	 Computing in SCienCe & engineering

cally valid. This typically involves
multiple runs of the model with ran
dom draws from the distributions
describing the stochastic variables.
SimEvents doesn’t provide an easy,
direct way to organize and conduct
such multiplerun experiments. In
stead, builders (or users) must ini
tialize and control the experiment’s
operation from the Matlab environ
ment using Matlab programs. Al
though it’s certainly advantageous for
SimEvents to leverage the existing
Matlab system, this approach again
places an extra burden on users to be
skilled in Matlab. SimEvents doesn’t
compare well to Arena in this area,
but we should remember that this is
the first release, whereas Arena is a
mature system that’s benefited from
multiple improvements.

Indirect Mechanisms
SimEvents supports three basic
 approaches to constructing model
mechanisms indirectly. First, we can
combine SimEvents blocks into subsys
tems to create single, specialized mech
anisms or provide functionality missing
in direct mechanisms. Given the rich
environment of signalprocessing and
eventmanipulating mechanisms with
in SimEvents, it’s possible to construct
a library of subsystem blocks to corre
spond to any target.

Given that modelers can use the
surrounding Simulink environment’s
features in SimEvents models, a sec
ond approach is to combine Simulink
blocks with SimEvents blocks to cre
ate desired subsystems when combina
tions of SimEvents blocks alone can’t
achieve the desired functionality.

Finally, it’s relatively simple to send
and receive data from the underlying
Matlab environment with its extensive
function library and general program
ming language for creating special

ized functions. The discrete event signal
to workspace block makes it possible to
send data directly to the Matlab work
space. Modelers with time and Matlab
expertise can thus use the extensive
Matlab facilities to create specialized
libraries of blocks.

Table 1 presents my overall evalu
ation of SimEvents. A “Yes” un

der the “Direct” heading means that
a mechanism exists to provide the fea
ture; a “Yes” under the “Indirect” head
ing means that it’s possible to construct
such a feature by combining two or
more mechanisms, possibly including
ones that are external to SimEvents.

Although it’s missing some direct
mechanisms for important features,
SimEvents is a good allaround
DESS, provided that the resources
are available to use indirect mecha
nisms to supply the missing direct
mechanisms. It’s especially useful for
existing Matlab and Simulink users.
Its ease of integration with the exist
ing system is a really strong feature
because we can use SimEvents to
construct complex hybrid systems of
discrete/continuous processing.

Acknowledgments
I thank MathWorks for providing an
evaluation copy of SimEvents (avail
able from www.mathworks.com).

Reference
 J. Banks et al., Discrete-Event System Simula-
tion, 3rd ed., Prentice-hall, 2001.

Michael A. Gray is an associate professor at
American University. his research interests
include computer science and physics.
gray has a PhD in physics from Pennsylva-
nia State University. he is a member of the
ACM, the IEEE, and the IEEE Computer So-
ciety. Contact him at gray@american.edu.

1.

EXECUTIVE COMMITTEE

President: Michael R. Williams*
President-Elect: Rangachar Kasturi;* Past President:

Deborah M. Cooper;* VP, Conferences and Tutorials:
Susan K. (Kathy) Land (1ST VP);* VP, Electronic Prod-
ucts and Services: Sorel Reisman (2ND VP);* VP,
Chapters Activities: Antonio Doria;* VP, Educational
Activities: Stephen B. Seidman;† VP, Publications: Jon
G. Rokne;† VP, Standards Activities: John Walz;† VP,
Technical Activities: Stephanie M. White;* Secretary:
Christina M. Schober;* Treasurer: Michel Israel;†
2006–2007 IEEE Division V Director: Oscar N.
Garcia;† 2007–2008 IEEE Division VIII Director:
Thomas W. Williams;† 2007 IEEE Division V Director-
Elect: Deborah M. Cooper;* Computer Editor in Chief:
Carl K. Chang;† Executive Director: Angela R. Burgess†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2007: Jean M. Bacon, George V. Cybenko,
Antonio Doria, Richard A. Kemmerer, Itaru Mimura,
Brian M. O’Connell, Christina M. Schober

Term Expiring 2008: Richard H. Eckhouse, James D. Isaak,
James W. Moore, Gary McGraw, Robert H. Sloan,
Makoto Takizawa, Stephanie M. White

Term Expiring 2009: Van L. Eden, Robert Dupuis, Frank E.
Ferrante, Roger U. Fujii, Ann Q. Gates, Juan E. Gilbert,
Don F. Shafer

Next Board Meeting: 9 Nov. 2007, Cancún, Mexico

EXECUTIVE STAFF

Executive Director: Angela R. Burgess; Associate Execu-
tive Director: Anne Marie Kelly; Associate Publisher:
Dick Price; Director, Administration: Violet S. Doan;
Director, Finance and Accounting: John Miller

COMPUTER SOCIETY OFFICES
Washington Office. 1730 Massachusetts Ave. NW,

Washington, DC 20036-1992
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org

Los Alamitos Office. 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720-1314
Phone: +1 714 821 8380 • Email: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657 • Fax: +1 714 821 4641
Email: help@computer.org

Asia/Pacific Office. Watanabe Building, 1-4-2 Minami-
Aoyama, Minato-ku, Tokyo 107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Leah H. Jamieson; President-Elect: Lewis
Terman; Past President: Michael R. Lightner; Executive
Director & COO: Jeffry W. Raynes; Secretary: Celia
Desmond; Treasurer: David Green; VP, Educational
Activities: Moshe Kam; VP, Publication Services and
Products: John Baillieul; VP, Regional Activities: Pedro
Ray; President, Standards Association: George W.
Arnold; VP, Technical Activities: Peter Staecker; IEEE
Division V Director: Oscar N. Garcia; IEEE Division VIII
Director: Thomas W. Williams; President, IEEE-USA:
John W. Meredith, P.E.

PURPOSE: The IEEE Computer Society is the
world’s largest association of computing
professionals and is the leading provider of
technical information in the field. Visit our
Web site at www.computer.org.

revised 25 June 2007

