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Abstract— A modern control system is typically implemented
as a multitasking software application executing in a real-time
operating system. If the computer load is high, the controller
will experience delays and jitter, which in turn degrade the con-
trol performance. Arguing for an integrated design approach,
the paper describes two computer tools for implementation-
aware control analysis: TrueTime and Jitterbug. An example
is given where the tools are used together to evaluate the
performance of various control task implementations.

I. INTRODUCTION

The design of computer-based control systems is tradi-
tionally based on the principle of separation of concerns. By
providing a suitable implementation framework, the concerns
of interest to the control engineers can be separated from
the concerns related to the computing and communication
platform on which the controller is implemented. The as-
sumptions underlying the separation are that the implementa-
tion platform is able to provide deterministic (often periodic)
sampling, negligible or constant input-output latencies, and
floating point arithmetics. Separation of concerns has several
advantages. It allows the control engineers to focus on the
pure control design without having to worry about how the
control system eventually is implemented. At the same time,
it has allowed the real-time computing community to focus
on development of scheduling theory and computational
models that makes it possible to fulfil the assumptions,
without any need to understand what impact the scheduling
has on the stability and performance of the plant under
control.

However, in practice it is not always so easy to obtain this
separation of concerns. In embedded applications, computing
and communication resources are often severely limited, and
it is therefore desirable to maximize their utilization. The
priority-based scheduling used by most real-time operating
systems introduces temporal nondeterminism. The schedula-
bility theory that is available is mostly concerned with worst-
case scenarios. Providing worst-case guarantees often implies
over-provisioning of resources and low average-case utiliza-
tion. Time-driven static scheduling is more deterministic but
less efficient from an utilization perspective. A consequence
of these problems is that the separation is often incomplete
and therefore the control issues and the computing issues
interact, causing temporal nondeterminism in the form of
jitter in sampling and latencies. More specifically, scheduling
can cause jitter in both the sampling operation and in the
actuation operation, as illustrated in Fig. 1.

The main drawback with separations of concerns is that
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Fig. 1. Controller timing with scheduling-induced sampling latency Ls and
input-output latency Lio. Since the latencies vary from sample to sample,
there will be jitter in the input and output operations.

it often gives rise to worse control performance than what
can be achieved if the design of the control and real-
time computing and communication parts are integrated.
Better performance can be achieved if a co-design approach
is adopted, where the control system is designed taking
the resource constraints into account, and where the real-
time computing and scheduling is designed with the control
performance in mind. The resulting implementation-aware
control systems are better suited to meet the requirements of
embedded and networked applications.

A drawback with integration-based design is the increased
complexity. Therefore tool support is particularly important.
This paper describes two such tools: Jitterbug and TrueTime.
TrueTime (Section II) can be used to simulate how the
temporal aspects of real-time kernels and network commu-
nication influence the timing of a control loop. Given the
timing information of a control loop expressed in terms of
latency distributions, Jitterbug (Section III) can be used to
calculate the control performance, expressed in terms of a
quadratic cost function. The paper also presents an example
(Section IV) where the two tools have been used together to
evaluate various controller task models (including a new task
model) with respect to the obtained control performance. The
combined usage of the tools is illustrated in Fig. 2. The input
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Fig. 2. Possible combined usage of the tools.
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Fig. 3. The TrueTime block library. The Schedule and Monitor outputs
display the allocation of common resources (CPU, monitors, network)
during the simulation.

to TrueTime is a task set with specified periods, execution
time distributions and a task model/scheduling policy. Using
the logging functionality of TrueTime, estimates of the
latency probability distributions pLs and pLio are obtained.
These are then used together with a linear controller/plant
model in Jitterbug to estimate the resulting performance
index J.

An extensive survey of related work within the area of
co-design tools for embedded control systems is given in the
companion paper [12].

II. TRUETIME

TrueTime [4], [8], [9] is a MATLAB/Simulink-based tool
that facilitates simulation of the temporal behavior of a
multitasking real-time kernel executing controller tasks. The
tasks are controlling plants that are modeled as ordinary
continuous-time Simulink blocks. TrueTime also makes it
possible to simulate simple models of communication net-
works and their influence on networked control loops.

TrueTime provides a number of Simulink blocks, which
are shown in Fig. 3. The kernel block is event-driven and
executes code that models, e.g., I/O tasks, control algorithms,
and network interfaces. The scheduling policy of the individ-
ual kernel blocks is arbitrary and can be decided by the user.
Likewise, in the network, messages are sent and received
according to a chosen network model.

The level of simulation detail is also chosen by the user—
it is often neither necessary nor desirable to simulate code
execution on instruction level or network transmissions on bit
level. TrueTime allows the execution time of tasks and the
transmission times of messages to be modeled as constant,
random, or data-dependent. Furthermore, TrueTime allows
simulation of context switching and task synchronization
using events or monitors.

TrueTime can be used as an experimental platform for
research on dynamic real-time control systems. For instance,

it is possible to study compensation schemes that adjust
the control algorithm based on measurements of actual
timing variations (i.e., to treat the temporal uncertainty
as a disturbance and manage it with feedforward or gain
scheduling). It is also easy to experiment with more flexible
approaches to real-time scheduling of controllers, such as
feedback scheduling, see [3]. There, the available CPU or
network resources are dynamically distributed according to
the current situation (CPU load, the performance of the
different loops, etc.) in the system.

A. The Kernel Block

The kernel block is a Simulink S-function that simulates a
computer with a simple but flexible real-time kernel, A/D and
D/A converters, a network interface, and external interrupt
channels. The kernel executes user-defined tasks and inter-
rupt handlers. Internally, the kernel maintains several data
structures that are commonly found in a real-time kernel: a
ready queue, a time queue, and records for tasks, interrupt
handlers, monitors and timers that have been created for the
simulation.

An arbitrary number of tasks can be created to run in
the TrueTime kernel. Tasks may also be created dynamically
as the simulation progresses. Tasks are used to simulate
both periodic activities, such as controller and I/O tasks,
and aperiodic activities, such as communication tasks and
event-driven controllers. Aperiodic tasks are executed by the
creation of task instances (jobs). Each task is characterized
by a number of static (e.g., relative deadline, period, and
priority) and dynamic (e.g., absolute deadline and release
time) attributes.

Interrupts may be generated in two ways: externally (asso-
ciated with the external interrupt channel of the kernel block)
or internally (triggered by user-defined timers). When an
external or internal interrupt occurs, a user-defined interrupt
handler is scheduled to serve the interrupt.

The execution of tasks and interrupt handlers is defined by
user-written code functions. These functions can be written
either in C++ (for speed) or as MATLAB m-files (for ease
of use). Control algorithms may also be defined graphically
using ordinary discrete Simulink block diagrams. Simulated
execution occurs at three distinct priority levels: the interrupt
level (highest priority), the kernel level, and the task level
(lowest priority). The execution may be preemptive or non-
preemptive; this can be specified individually for each task
and interrupt handler.

B. The Network Blocks

TrueTime has two types of network blocks: for wired
networks and for wireless networks. The network blocks
are event-driven and executes when messages enter or leave
the network. When a node tries to transmit a message, a
triggering signal is sent to the network block on the cor-
responding input channel. When the simulated transmission
of the message is finished, the network block sends a new
triggering signal on the output channel corresponding to the
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Fig. 4. The execution of the code associated with tasks and interrupt
handlers is modeled by a number of code segments with different execution
times. Execution of user code occurs at the beginning of each code segment.

receiving node. The transmitted message is put in a buffer
at the receiving computer node.

A message contains information about the sending and
the receiving computer node, arbitrary user data (typically
measurement signals or control signals), the length of the
message, and optional real-time attributes such as a priority
or a deadline.

The network block simulates medium access and packet
transmission in a local area network. Six simple models of
wired networks are currently supported: CSMA/CD (e.g.,
Ethernet), CSMA/AMP (e.g., CAN), Round Robin (e.g.,
Token Bus), FDMA, TDMA (e.g., TTP), and Switched
Ethernet. TrueTime also supports two wireless protocols:
IEEE 802.11 b/g (WLAN) and IEEE 802.15.4 (the MAC
protocol used in Zigbee). The propagation delay is ignored,
since it is typically very small in a local area network. Higher
network layer protocols such as TCP can be implemented as
user applications in the kernel blocks.

Configuring the network blocks involve specifying a num-
ber of general parameters, such as transmission rate, network
model, and probability for packet loss. Protocol-specific
parameters that need to be supplied include the time slot
and cyclic schedule in the case of TDMA.

C. Execution model

The execution of tasks and interrupt handlers is defined by
code functions. A code function is further divided into code
segments according to the execution model in Fig. 4. The
code can interact with other tasks and with the environment
at the beginning of each code segment. This execution model
makes it possible to model input-output latencies, blocking
when accessing shared resources, etc. The number of seg-
ments can be chosen to simulate an arbitrary time granularity
of the code execution. Technically it would, e.g., be possible
to simulate very fine-grained details occurring at the machine
instruction level, such as race conditions. However, that
would require a large number of code segments.

The simulated execution time of each segment is returned
by the code function, and can be modeled as constant,
random, or data-dependent. The kernel keeps track of the
current segment and calls the code functions with the proper
argument during the simulation. Execution resumes in the
next segment when the task has been running for the time
associated with the previous segment. This means that pre-
emption by higher-priority activities and interrupts may cause

function [exectime,data] = ctrl_code(segment,data)
switch segment,

case 1,
data.y = ttAnalogIn(1);
data.u = calculate_output(data.x,data.y);
exectime = 0.002;

case 2,
ttAnalogOut(1,data.u);
data.x = update_state(data.x,data.y);
exectime = 0.006;

case 3,
exectime = -1; % finished

end

Fig. 5. Example of a standard controller code function written in MATLAB
code. The local memory of the control task is represented by the data
structure data. This stores the input, the controller state, and the output
between invocations of the code segments.

the actual delay between execution of segments to be longer
than the execution time.

The listing in Fig. 5 shows an example of a code function
corresponding to the time line in Fig. 4. The function
implements a standard regulator in state-space form. In the
first segment, the plant is sampled and the control signal is
computed (calculate output). In the second segment,
the control signal is actuated and the internal state is updated
(update state). The third segment indicates the end of
execution by returning a negative execution time.

The data structure data represents the local memory of
the task and is used to store the control signal and measured
variable between calls to the different segments. A/D and
D/A conversion is performed using the kernel primitives
ttAnalogIn and ttAnalogOut.

Note that the input-output latency of this controller will be
at least 2 ms (i.e., the execution time of the first segment).
However, if there is preemption from other high-priority
tasks, the actual input-output latency will be longer.

III. JITTERBUG

Jitterbug [4], [10], [5] is a MATLAB-based toolbox that
calculates a quadratic performance criterion for a linear
control system under various timing conditions. Using the
toolbox, one can easily and quickly assert how sensitive a
control system is to delay, jitter, lost samples, etc., without
resorting to simulation. The tool is quite general and can
also be used to investigate jitter-compensating controllers,
aperiodic controllers, and multi-rate controllers. The main
contribution of the toolbox, which is built on well-known
theory (LQG theory and jump linear systems), is to make it
easy to apply this type of stochastic analysis to a wide range
of problems.

Jitterbug offers a collection of MATLAB routines that
allow the user to build and analyze simple timing models
of computer-controlled systems. A control system is built
by connecting a number of continuous- and discrete-time
systems. For each subsystem, optional noise and cost speci-
fications may be given. In the simplest case, the discrete-
time systems are assumed to be updated in order during
the control period. For each discrete system, a random
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Fig. 6. A simple Jitterbug model of a computer-controlled system: (a) signal
model and (b) timing model. The process is described by the continuous-
time system G(s) and the controller is described by the discrete-time systems
H1(z) and H2(z), representing the sampler and the controller. The discrete
systems are executed according to the periodic timing model.

delay, described by a discrete probability density function, is
specified that must elapse before the next system is updated.
The total cost of the system (summed over all subsystems)
is computed algebraically if the timing model system is
periodic or iteratively if the timing model is aperiodic.

To make the performance analysis feasible, Jitterbug can
only handle a certain class of system. The control system
is built from linear systems driven by Gaussian white noise,
and the performance criterion to be evaluated is specified as
a quadratic, stationary cost function. The timing delays in
one period are assumed to be independent from the delays
in the previous period. Also, the delay probability density
functions are discretized using a time-grain that is common
to the whole model.

Even though a quadratic cost function can hardly capture
all aspects of a control loop, it can still be useful when one
wants to quickly judge several possible controller implemen-
tations against each other. A higher value of the cost function
typically indicates that the closed-loop system is less stable
(i.e., more oscillatory), and an infinite cost means that the
control loop is unstable. The cost function can easily be
evaluated for a large set of design parameters and can be
used as a basis for the control and real-time design.

A. Example

In Jitterbug, a control system is described by two parallel
models: a signal model and a timing model. The signal
model is given by a number of connected, linear, continuous-
and discrete-time systems. The timing model consists of a
number of timing nodes and describes when the different
discrete-time systems should be updated during the control
period. An typical example is shown in Fig. 6, where a
computer-controlled system is modeled by three blocks. The
plant is described by the continuous-time system G, and the
controller is described by the two discrete-time systems H1

and H2. The system H1 could represent a periodic sampler,
while H2 represents the computation of the control signal
and the actuator. The associated timing model says that, at
beginning of each period, there is a random delay Ls before
H1 is executed. Then there is another random delay Lio

before H2 is executed. The delay could model computational

delays, scheduling delays, or network transmission delays.
Note that this model corresponds to the task timing diagram
in Fig. 1. The latency probability distributions could be
obtained by statistical scheduling analysis, by simulation of
the scheduling algorithm, or from measurements.

As examples of extensions, the same discrete-time system
may be updated in several timing nodes. It is possible to
specify different update equations in the various cases. This
can be used to model a filter where the update equations look
different depending on whether or not a measurement value
is available. It is also possible to make the update equations
depend on the time since the first node became active. This
can be used to model jitter-compensating controllers.

IV. TASK MODEL EVALUATION

A. Control Subtask Models

There are several ways to implement a periodic controller
in a priority-based real-time kernel. The simplest approach
is to use a single task to implement the controller, and
to use, e.g., rate-monotonic or deadline-monotonic priority
assignment to decide the priority of the task. This approach
is denoted the standard task model (STM) in the sequel.
However, in a multi-tasking environment a task can always
be suspended by higher-priority tasks. Likewise, a task can
be blocked by lower-priority tasks if the tasks share other
resources. The result of this is temporal nondeterminism in
the form of sampling jitter and input-output jitter.

One way to reduce the jitter is to use a subtask model,
in which the controller is modelled as a sequence of sub-
tasks and where different priorities are used in the different
subtasks. Here, three such subtask models will be evaluated
with respect to the control performance that they typically
give rise to.

In the Calculate Output-Update State (CO US) model [2]
each control task is split into two sequential subtasks: Calcu-
late Output and Update State. The sampling is performed at
the beginning of the CO part and the actuation is performed
at the end of the CO task. In the update state part the internal
states of the controller are updated. Since it is the execution
time of CO that decides the input-output latency it is assigned
a shorter deadline than the US task. By using deadline-
monotonic priority assignment the deadlines are reflected in
the priorities.

In the Initial, Mandatory and Final (IMF) subtask model
[6], [1] each control task is instead split into three subtasks:
the initial task in which the sampling is performed, the
mandatory task in which the control calculations, including
the state update, are performed, and the final task where the
actuation is performed. The model assigns high priority to
the final task, medium priority to the initial task, and low
priority to the mandatory task.

Finally, we propose a new model called Initial, Calculate
Output, Final, Update (ICOFU) that combines the properties
of the two above models. The main idea is to split the
mandatory subtask of the IMF model into a Calculate Output
subtask and an Update State subtask. The initial and final
tasks remain the same as in the original IMF model. This

1197



Fig. 7. TrueTime model to control multiple plants

gives additional flexibility since now it is possible for the
update state subtask to complete after the final task, and even
after the initial task of the next iteration. The schedulability
of the ICOFU model is checked through offset-based, or
asynchronous, schedulability analysis, see [11].

B. TrueTime and Jitterbug Models

The evaluation of the different subtask models is per-
formed through a scenario in which a computer with limited
computing resources is used to control three independent
plants with different initial parameters. An LQG controller
is designed for each plant. The controller is designed to
compensate for the minimum possible delay for each subtask
model. Fig. 7 shows the TrueTime block diagram for the
system.

In order to evaluate the performance of the subtask models,
a plant test batch is used. The batch is inspired by [7], where
a test batch for process control and PID tuning was presented.
Compared to that batch, plants with excessive dead-times
have not been considered, and some more difficult-to-control
resonant and unstable plants have been added. There batch
contains 27 plants in total, including stable, marginally
stable, and unstable plants.

The performance of the controller is measured using a
quadratic cost function

J = lim
T→∞

1
T

∫ T

0
(y2(t)+ρu2(t))dt (1)

where ρ is a weight, u is the control signal and y is the
plant response. The performance index is valid under the
assumptions that the reference value is zero, the closed-loop
system is asymptotically stable, and the system is disturbed
by zero-mean white noise.

The cost function could in theory be evaluated numeri-
cally using very long simulations with TrueTime. A better
alternative is to use Jitterbug, where the cost function can
be computed analytically. The necessary delay distributions
are obtained from TrueTime using the possibility to log
scheduling events to the Matlab workspace and thereby
calculate the true distributions for the sampling latency and
input-output latency given the task set. The computation
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Fig. 8. Ls and Lio distributions for STM, CO US, IMF and ICOFU models

times for the different subtasks in TrueTime were specified
by uniform distributions between a minimum and maximum
value.

C. Results

Fig. 8 reports the sampling latency and input-output
latency distributions obtained by TrueTime simulations of
the various task models. The STM model gives the highest
sampling jitter and input-output jitter. In order to reduce this
variability, IMF introduces a constant input-output latency.
Even though sampling and actuation are done periodically
(at 0.5 and 21.5 ms respectively) the fixed delay is very
large (60% of period). The input-output latency is reduced
to 7.5 ms when using the ICOFU model and the jitter is kept
very low, achieving the best results. On the other hand, the
CO US model sends the control action as soon as possible
(control action will never be sent later than 6ms) but with a
higher input-output jitter.

Fig. 9 shows the values of the cost function obtained from
Jitterbug when the overall system consists of three unstable
plants (three inverted pendulums with different lengths).
For long sampling periods, h, i.e. when the product ωbh
approaches 1, where ωb is the bandwidth of the closed
loop system, performance becomes degraded for all four
task models (STM, CO US, IMF, ICOFU). This is the
expected behaviour, since, in general, slow sampling causes
worse performance. The ICOFU model gives the best overall
performance, for most sampling periods. When ωbh ≈ 0.4
and ωbh ≈ 0.8 for STM and IMF respectively, the cost goes
to ∞. This corresponds to an unstable closed-loop system.

Fig.s 10 and 11 show the cost function for stable and
marginally stable plants respectively, for the longest-period
task. This task will suffer the most from interference from
other tasks and therefore it has the most pessimistic dis-
tributions of the sampling latency and input-output latency.
For stable plants no instability problems are obtained and
the difference between the models is minor. For marginally
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Fig. 9. Cost evaluation for the different task models on an open-loop
unstable plant.
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Fig. 10. Cost evaluation. Stable Systems

unstable plants ICOFU and CO US give a nearly linear
behaviour whereas the performance using the other two
models deteriorate substantially as the sampling period is
increased.

V. CONCLUSIONS

In this paper the two co-design tools TrueTime and
Jitterbug have been presented. As an application example,
we showed how the two tools can be used together to
evaluate the performance of different controller implemen-
tations. First, the probability distributions of the sampling
and input-output latencies are obtained using simulations in
TrueTime. Then, the expected performance of the control
loop as measured by a quadratic cost function is evaluated
algebraically using Jitterbug. We also proposed a new task
model, which was able to reduce the latency and jitter further.
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Fig. 11. Cost evaluation. Marginally Stable Systems

Repeating the cost computations for a large plant batch,
some general conclusions regarding the various controller
implementations could be drawn.
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