
BEST PRACTICES FOR C++ and GIT

• Busra Sen

• Mechanical Engineering, Control Systems Technology Group

INTRODUCTION

• Understand
requirements

• Plan and task
divisions

Achieve some
parts of the task

Add new
features

Share your work with
other team members
to fix a bug or get
feedback

Recall

Understand the
code

After a while

https://dribbble.com/shots/110869
28-Working-girl

https://onix-systems.medium.com/how-
to-determine-the-number-of-project-
team-members-for-your-it-initiative-
4282dcba3c74

INTRODUCTION

What is a bad code?

• Not readable

• No consistency

• Difficult to modify

• Difficult to track

Okay, but the computer
understands what I write. So
why should I care?

Consequences of bad code

• Lack of motivation

• Missed deadlines

• Decreasing in productivity

• Financial losses

Figure from Clean Code book

MOTIVATION

Okay, then let’s talk about positive terms such as clean code ☺

• Clean code refers to well-structured, readable, and maintainable code that is easy to
understand and change.

• Clean code is not about making the code work; it helps other developers to figure out
and collaborate.

Let’s summarize what you should expect from this lecture

o Best practices to improve software quality,
o Best practices to avoid pitfalls in C++,
o Best practices for the version control system in a teamwork

CONSISTENT CODE STYLE

- A good code should have a consistent style that covers indentation, braces, line length, spacing,

naming convention, etc.

Brace Placement

a) Kernighan and Ritchie Style (K&R) b) Allman Style c) Whitesmiths Style

if (x < y) {
something();

}

if (x < y)
{
something();
myFunc();

}

if (x < y)
{
something();
myFunc();
}

CONSISTENT CODE STYLE

Keep lines at a reasonable length [3]

Lines length should be less than 80 characters per line.

if (x && y && hasPrime() && isCostPositive() && hasPositiveNumber && (x > y || y < z))
{

// Hard to follow
}

if (x && y && hasPrime() && isCostPositive()
&& hasPositiveNumber
&& (x > y || y < z))

{
// Logical groups for reasonable line length

}

Indentation Level

CONSISTENT CODE STYLE

Best practice

It is recommended for the team decide on a consistent code style that is

accepted and followed by all members.

Horizontal Whitespace

- No space is left between the unary operator and its operand

++x;
!isDoorOpen();
*pName;

- Leave space between binary operator and operands

subtract = number1 - number2;
if(x <= y)

- Leave space after each comma and semicolon. No space
before a comma or semicolon

for (i = 0, j = 0; i < userInput; i++, j++)

Consistent Naming Style

value
myVariableName
myFuncName

value
my_variable_name
my_func_name

https://en.wikipedia.org/wiki/Camel_caseThe

https://commons.wikimedia.org/wiki/File:Emoji_u
1f40d.svg

COMMENTS

• Transfer the intent of the code to humans such as new developers, and new team members.

• If you want to add a comment to explain your code, you should think to rewrite that code.

• Redundant Comments

- Do not comment on obvious things: You should not

violate the DRY principle

// Calculate the distance

float distance = sqrt(pow(x2 - x1, 2) +

pow(y2 - y1, 2)); // Distance formula

++counter; // increment counter

- Do not disable code with comments. Or do not use

comments to substitute version control

// This function is no longer used
/*
int computeManhattanDistance(const Point& p1, const Point& p2)
{

int distance = abs(p1.x - p2.x) + abs(p1.y - p2.y);
return distance;

}
*/

//
**
// [01-04-2023] X fixed the bugs ...
// [05-05-2023] Y add feature ...
// [10-05-2023] Z remove function ..
//**

Use a version control system! ☺

Commented-out code

Tracking teammate activities

COMMENTS

Best practice

Critically evaluate the necessity of each comment

- Make sure that your comments add value to the code

- Highlight design decisions and assumptions

- Explain always why, not how!

- Try to be as short and expressive as possible

Good Comments

// Compute heuristic function using Manhattan
distance - move in four directions

std::vector<GridPosition> findOptimalPath(const
GridPosition& start, const GridPosition& goal)
{

// ...
}

// Make sure to call initializeRobot()
before running this function.
void performTask() {

// ...
}

// Decrease the joint angle within the
valid range
if (jointAngle < 0) {

jointAngle = 0; // Ensure the joint
angle is non-negative
}

Null Statement

for (int i = 0; i <= SIZE; i++)
; // null statement

for (int i = 0; i <= SIZE; i++);

MEANINGFUL NAMES

• An identifier is a name used to show a variable, object, class, structure, function, etc.

• There are certain rules for naming [7]:

1. Keywords cannot be used for identifier

2. The identifier can include letters, numbers, and the underscore character,

3. The identifier can begin with a letter or underscore character,

4. The identifier is case-sensitive: the number is different from NUMBER

Why do we need good names?

• To increase your code readability

• To Reveal your intention to your teammates quickly,

• To recall what you intended after a few weeks/months,

Reveal their intention

• A good name tells you why it exists [1].

• You shouldn’t need an explanation for a variable
name.

• Data, num, flag, and list are not good names [2].
Which data do you mean?

Avoid exhaustive variable names

• No doubt, it is clear! But readability?
• Not easy to remember
• Difficult to type

MEANINGFUL NAMES

Do not use l and O for your variable names Avoid redundancy when choosing a name

• Readability depends on fonts. But if
you do not really need these variable
names, do not use them!

• Do not repeat class names in their attributes

• Do not repeat attribute type

MEANINGFUL NAMES

• Do not use abbreviations, unless they are commonly

known,

• Avoid using the same name for different purposes,

• If a variable name is widely used, make it more

descriptive. Usually, it depends on the scope.

Other Suggestions

FUNCTIONS

returnType functionName(parameterType parameter)
{
// Function Body

}

One Thing, No More! • Clear, expressive, and
self-explanatory

• Function name begins
with a verb!

• The function name
explains intention, not
how it works.

Signs that your function does more than one thing [2]:
1. The function is too large (Ideally 4-5 lines, maximum of 12-15

lines.)
2. You cannot avoid using conjunctions such as “and ” or “or” to

build the function name
3. The body of the function is vertically separated using empty

lines
4. Function contains many conditional statements
5. The function has many arguments, especially flag arguments of

type bool

AVOID MAGIC NUMBERS

• A magic number is any value that is used in code without a clear explanation of what it represents.

• This can be any literal such as strings, characters, integers, etc.

• 10, 1.5, and 0.1 are magic numbers.

• The magic number makes the code difficult

to read, understand and modify.

• What is 10?

• Should I change each 1.5 in my code?

What can we use instead of magic numbers?

What about MACROS?

AVOID MACROS

• A macro is a feature that decides how the input text will be transformed into the output
text.

• Two types: object-like macros, and function-like macros

#define PI 3.14159265358979 // object-like macro
#define SQUARE(x) (x) * (x) // function-like macro
#define MIN(a,b) (((a)<(b))?(a):(b)) // function-like macro

#include <iostream>

#define SQUARE(a) ((a)*(a))

int main()
{

int x = 10;
int y = SQUARE(x++);

std::cout << "x is: " << x << std::endl;
std::cout << "y is: " << y << std::endl;

return 0;
}

Undefined behavior :
(x++) * (x++) ;

#include <iostream>

template<typename T>
T square(T a) { return a * a; }

int main()
{

int x = 10;
int y = square(x++);

std::cout << "x is: " << x << std::endl;
std::cout << "y is: " << y << std::endl;

return 0;
}

x is: 11
y is: 100

Macros violate
argument-passing
rules!

AVOID MACROS

• Macros obey scope rules

#include <iostream>

void checkSomething()
{

// ...
int variable = 10;
#define FLAG 1
// ..

}

int main()
{

std::cout << FLAG << std::endl;

return 0;
}

Although macro is inside a function, its scope is
not like function scope.

• Avoid defining macros in a header file.

• Define macros immediately before their usage

and remove the definitions (#undef) after.

• Select unique names for macros to prevent

conflicts with other names.

• If you still want to use macros :

ALWAYS INITIALIZE VARIABLES

• Initialization refers to providing an object with a known value at the moment of its definition.

• Assignment, on the other hand, involves assigning a known value to an object after its initial

definition.

• If an object is uninitialized, it means that it has not been assigned a known value yet.

Which value is assigned to an uninitialized local variable?

#include <iostream>

struct Position
{

double x;
double y;

};

int main()
{

Position robotPosition;
std::cout << robotPosition.x << '\n';

return 0;
}

UNDEFINED BEHAVIOR!

Best practice
Always initialize variables.
Initialize variables, when you need them!

Assigning a meaningful value to a variable as close as

possible to its declaration is considered a best practice.

int x = 1;
// ... no use of
// ... use of x
// ... here

++x;

AVOID (non-const) GLOBAL VARIABLES

- Global variables have a file scope

- Increase the complexity of debugging
- They can be written and read from anywhere
- Make the code harder to understand

• But maybe you need global variables, then some suggestions:

- Choose global variables names beginning with “g” to clarify that this is a global variable

- Define your global variables inside a namespace to avoid naming conflicts

- Document the purpose of global variables using comments

Best practice
If it is possible, prefer local variables over global
variables.

AVOID MIXING SIGNED AND UNSIGNED INTEGERS

• Unsigned integers hold non-negative numbers.

• n-bit unsigned integer has a range of (2^n)-1

#include <iostream>

int main()
{

unsigned int x = 4294967295;
unsigned int y = -1;
unsigned int z = 4294967296;

std::cout << "x is " << x << '\n';
std::cout << "y is " << y << '\n';
std::cout << "z is " << z << '\n';

return 0;
}

#include <iostream>

int main()
{

unsigned int x{ 3 };
unsigned int y{ 5 };

std::cout << "x - y is " << x - y << '\n';

return 0;
}

#include <iostream>

int main()
{

int x{ -3 };
unsigned int y{ 5 };

std::cout << std::boolalpha << (x < y) << '\n';

return 0;
}

FALSE!

Best practice
Be careful when you use unsigned integers. Avoid mixing signed and unsigned integers!

USE EXPLICIT NAMESPACES

#include <iostream>

int add(int x, int y)
{
return x + y;
}

int main()
{
std::cout << add(2, 3);

return 0;

}

#include <iostream>

int add(int x, int y)
{
return x + y;
}

int add(int x, int y)
{
return x + y;
}

int main()
{
std::cout << add(2, 3);

return 0;

}

int add(int x, int y)
{
return x + y;
}

Compile Error

Linkage Error

• When the compiler or linker cannot

distinguish between two identical

identifiers, an error known as a "naming

conflict" will occur [7].

• Use namespaces (scope region) to avoid

naming conflicts.

USE EXPLICIT NAMESPACES

• Std::cout -> cout function that lives inside

std (standard) namespace.

#include <iostream>

int add(int x, int y)
{
return x + y;
}

int main()
{
std::cout << add(2, 3);

return 0;

}

Two representations

Explicit Namespaces

Using :: scope resolution
operator

Using directives

using namespace NAME;

#include <iostream>
using namespace std;

int cout()
{
return 0;
}

int main()
{
cout << "Hello world" << endl;
return 0;
}

Compile
Error

Using-directive may cause conflicts between any identifiers we define and the
namespace’s identifier. For example, maybe today you guarantee that there is no
conflict between your identifier and standard library, but what about the next
revisions to the language [7]?

Best practice
Prefer explicit namespaces over using directives.

GIT BEST PRACTICES

22

Best practice
Use a version control system for team collaboration!

GIT

• Git is a distributed version control system that is open-source and enables you to monitor modifications made to a
file or a set of files.

What is the significance of Git?

• Maintain an organized project history.
• Easily revert to previous versions of the project.
• Track and attribute changes made by individuals.
• Facilitate independent work on the project.
• Safely experiment with new features without impacting the main codebase.
• Enhance code quality through code reviews.

Remote
Repository

Local
Repository

Local
Repository

A GOOD COMMIT MESSAGE

A commit is a snapshot of the project.

• To remember what you did in the past,
• To reveal why these changes were made
• To track what others did on the project

Code with
a bug – 3
Features

Code without
bug and new
features – 60
features

Code with
a bug – 3
Features

Fix the bug Add
feature A

Add
feature B

Best practice
You should commit often!

Best practice
Good commit messages are structured like emails [5].

First line: Like a subject of an email
• Use imperative commands: such as fix, update,

remove, add, etc.
• Explain what you changed
• Keep it small it should not exceed 50 characters

A blank line
• If you want to give more explanations, add a blank

line between the subject of the message and the
body of the message.

Message body
• Message should include why the change was made
• Each line must be less than 72 characters.
• You can use bullet points
• Use present tense
• No restrictions about the length of the message

A GOOD COMMIT MESSAGE

Bad commit messages:

Why?

Which bugs?

Too long!

Good commit message

BRANCHES

The branch is a separate line of development that diverges from the other lines.

Each commit belongs to a branch.

master

featureA

A B C

D

Why should we use branches?

- Provides experimentation

- Multiple team members can work independently

- Keep multiple versions of the project

Question:

Which commits belong to the featureA?

Which commits belong to the master?

Topic and long-running branches

Master
(Long-
Running
Branch)

A B C

D E

F G

BugFix (Topic Branch)

Clearly label and name your branches
for easy identification.

Best Practice

MERGING

• Merging is to combine independent branches.
• Usually, a topic branch is merged with a long-running

branch such as a master branch!

master A B C

D

M

featureA

M: merge
commit

Commit M includes commits A, B, C, and D.

Main types of merges:

• Fast-forward merge
• Merge commit
• Squash merge
• Rebase

Fast-forward merge:

master A B

C featureAD

Before
merge

➢ git checkout master
➢ git merge featureA

master A B C

featureA

D After
merge

• Default merge type
• Linear history

MERGING

master A B

C featureAD

Before
merge

E

Is fast-forward possible for the following situation?

Merge Commit:

Merge commit combines the commit of the topic
branch and base branch to a single merge commit.

master A B

C D

E M

Nonlinear graph – easy to see commit history

➢ git checkout master
➢ git merge featureA

master A B

C D

Before
merge

➢ git checkout master
➢ git merge - -no-ff featureA featureA

Even though a branch is fast-forwardable, you
can perform merge commit with - -no-ff option

Best practice
Choose a merge policy as a team!
After merging, will you remove a branch to have a
clear history? Or will you always keep topic
branches to see the history?

RESOLVING MERGE CONFLICTS

master A B C

DLocalization

Human decides

• Merge conflicts occur when we change the same part of a file in
different branches.

Best practice
Prefer small and frequent merges!

A B

C D

G M

E

F

A B

C D

G M

E

Yes!

REWRITING COMMIT HISTORY

REBASE

master A

feature B

C

Before rebase

master A

feature B

C

After rebase

git checkout feature

git rebase master

+ After rebasing you have a clean history
- But you change the history
- It can cause merge conflicts

Best practice
If you share your branch with others, do not
rewrite history!

If there is a merge conflict:

git rebase master

Fix the conflict

git rebase --continue

REWRITING COMMIT HISTORY

AMENDING A COMMIT

Change the commit message
Change the files using the same commit message

git commit - -amend –m “new commit message”
git commit - -amend –no-edit

REWRITING COMMIT HISTORY

INTERACTIVE REBASE

• Edit any commit in any branch

• History will change

git rebase –i <after this commit>

master A B

git rebase –i 9e32

drop

Delete Commit

master A

REWRITING COMMIT HISTORY

INTERACTIVE REBASE

Squash a commit

master A B C

Combine the commit messages and

remove the newer commit

master A Cx

git rebase –i 1cbb

We can edit commit message

REWRITING COMMIT HISTORY

SQUASH MERGE

master A

B

D

C
feature

Before merge

master A

B

D

C
feature

E

After merge

Clean history

Changes history

git merge –squash feature

git commit

B

A

C
D

Fix
conflict

A linear
history!

FETCH AND PULL BEFORE PUSH

Network commands: Clone, Fetch, Pull and Push

Fetch
View changes on the remote repository without merging
Updates tracking branches

main A B

git clone <repository>

master A B

main

HEAD

origin/main A local branch
representing remote
branch

Let’s assume that someone added a commit to the
remote repository!

git fetch <repository>

main A B

main

HEAD

origin/main

C

The tracking branch will be updated after git fetch

FETCH AND PULL BEFORE PUSH

Network commands: Clone, Fetch, Pull and Push

main A B

main

HEAD

origin/main

C

Pull: Fetch and merge together! After fetch, we use
pull command to update our local branches and
working area.

Push: Add commits to a remote repository

Best practice
Fetch and Pull frequently!
Fetch and Pull before Push.

PEER CODE REVIEW

• Git hosting websites such as GitLab provides a pull request option.

• You can review the codes, or you can send a review invitation

before merging the branch

master A B

C D

Your branch is ready to
merge – ask for code
review,

You need help because of
bugs,

You want to discuss
something about this
branch

In Gitlab, create a merge
request and add some
reviewers from your project

You should be respectful while you
are giving feedback
Also, try to complete the review in a
short time
Why the code needs to be changed,
explain.

CHOOSE A WORKFLOW

• A workflow is the way that your team achieved the task.

• There are different types of workflows such as centralized,
feature branch, and git flow workflows, etc.

1- CENTRALIZED WORKFLOW

- Use only one branch (main)
- Work independently on your local repo

A B main
Remote
repository

User 1 Local Repo

A B C A B D

User 2 Local Repo

A B main
Remote
repository

A B C A B D

Push

C

Fetch and Pull
If there is
conflict, solve it
Then push

- Simple
- You can work independently but you do

not take advantage of branching
- It is suitable for small size teams

CHOOSE A WORKFLOW

2- FEATURE BRANCH WORKFLOW

- After one of the users completes the feature, the

other user performs a code review then the user

can merge the feature to the main branch!

A B main
Remote
repository

User 1 Local Repo

A B

C DFeature 1

User 2 Local Repo

A B

Feature 2 D E

3- GITFLOW WORKFLOW

Best practice
You should decide which workflow you will use as
a team! You do not have to use existing flows. You
can mix them or you can create your own
workflow. The important thing is to make sure all
team members agree with the workflow!

Figure from https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-
workflow

CONCLUSION

• As a team you should think about some points to have a clean code

❑ Consistent code style
❑ Meaningful names
❑ Functions that do not have more than one thing
❑ Good comments explain the reason behind decisions
❑ Avoid magic numbers
❑ Avoid unsigned signed numbers
❑ Initialize your local variables
❑ Define a variable when you need them
❑ Avoid non-const global variables
❑ Use explicit namespace representation

• Choose a workflow when you start a project
• Merge frequently
• Commit frequently and write a good commit message
• Do not change history when you are sharing a branch with others
• Use code review to learn and improve your coding skills

THANK YOU FOR YOUR ATTENTION!

REFERENCES AND FURTHER READING

[1] Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.

[2] Roth, S. (2017). Clean C++: Sustainable Software Development Patterns and Best Practices with

C++ 17. Apress.

[3] https://lefticus.gitbooks.io/cpp-best-practices/content/03-Style.html

[4] //github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es20-always-initialize-

an-object

[5] McQuaid, M. (2014). Git in practice. Simon and Schuster

[6] https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud

[7] https://www.learncpp.com/

https://lefticus.gitbooks.io/cpp-best-practices/content/03-Style.html
https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud

