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Control Loop Timing 

• Classical control assumes deterministic sampling 
– in most cases periodic 

– too long sampling interval or too much jitter give poor performance or 
instability 

• Classical control assumes negligible or constant input-output 
latencies 
– if the latency is small compared to the sampling interval it can be ignored 

– if the latency is constant it can be included in the control design 

– too long latency or too much jitter give poor performance or instability 
 

 

 



Networked Embedded Control Timing 

• Embedded control often implies temporal non-
determinism 
– multiple tasks  
– preemptions, blocking, varying computation times, non-

deterministic kernel primitives, … 
• Networked control often implies temporal non-

determinism 
– network interface delay, queuing delay, transmission delay, 

propagation delay, link layer resending delay, transport layer 
ACK delay, ... 

– lost packets 
 

How does this effect performance? 



• Constant delays in linear systems --- straightforward 

• Sampling jitter and input-output jitter --  more 
difficult 

– Worst-case stability analysis 
• Requires minimum and maximum values for the jitter 

• Stability margin theorems by Kao & Lincoln and by Cervin 

– Average-case stochastic performance analysis 
• Requires a stichastic model of latencies 

• Jitterbug toolbox 

– Simulation 
• TrueTime toolbox 

 

Analysis of Control Performance 



Analysis of Control Performance 

The control performance depends on a number 
of issues: 

– The dynamics of the plant that is controlled 

– The controller type 

– The design specifications for the controller 

– The nature of the disturbances 

– The delay distribution 

– What type of control performance that we are 
interested in 
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Jitter Margin – Stability under Input-Output Jitter 





Stability Under Jitter – Sampled Control Case 



Jitter Margin Limitations 



Jitter Margin for Input and Output Jitter 

• Cervin (ACC 2012) 
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Jitterbug 



Jitterbug 
• Matlab-based toolbox for analysis of real-

time control performance 

• Evaluate effects of latencies, jitter, lost 
samples, aborted computations, etc on 
control performance 

• Analyze jitter-compensating controllers, 
aperiodic controllers, multi-rate 
controllers 

• Calculation of a quadratic performance 
criterion function 

• Packaging of existing theory for linear 
quadratic Gaussian systems and jump-
linear systems 

 



Jitterbug Analysis 

• System described using a number of 
connected continuous-time and discrete-time 
transfer function blocks driven by white noise 
 
 
Distributed Control Loop: 

Plant Sensor Actuator 

Controller 



Jitterbug Analysis 
• The execution of the blocks is 

described by a stochastic timing 
model expressed as an automaton 

• Each state can trigger one or more 
discrete systems 

• Time intervals are represented by 
discrete probability distributions  



Jitterbug Model - Example 



Jitterbug Example Script 

% Corresponds to zero delay 



Jitterbug example script 



Simple Example 

• P(s) – Process (Inverted pendulum) 

• S(z) – Sampler (perfect sampling) 

• K(z) – Controller + actuator 

• Lio – input output latency 

2 

1 S(z) 

K(z) 

Timing model: 

Lio 



Demo 



Results 



More complicated cases 



Aperiodic Systems 

• Jitterbug supports both periodic and aperiodic 
systems 

• Periodic: 
–  >calccost 

– Analytical solution, reasonably fast 

• Aperiodic: 
–  >calccostiter 

– Iterative computation with possibly very slow 
convergence 



Internal Workings 
1. Sample the continuous-time system, the noise, and the cost 

function with the time-grain 𝛿 

2. Translate the timing model into a Markov chain 

3. Formulate the closed-loop system as a discrete-time jump 
linear system  
 

𝑥 𝑘 + 1 =  Φ𝑖 𝑘 𝑥 𝑘 + 𝑒 𝑘 , Ε 𝑒 𝑘 𝑒𝑇 𝑘 =  𝑅𝑖 𝑘  

 

        where Φ𝑖 𝑘  and 𝑅𝑖(𝑘) depends on the Markov state 𝑖 

4. Compute the stationary covariance 𝑃 = Ε{𝑥𝑥𝑇} from 
 

𝑃𝑖 𝑘 + 1 = Ε{Φ𝑖 𝑘 𝑃𝑖 𝑘 Φ𝑖 𝑘 𝑇 + 𝑅𝑖 𝑘 } 

 



Computational Complexity 

• A continuous-time system of order 𝑛 requires 𝑛 internal states 

• A discrete system of order 𝑛 requires 𝑛 + 1 internal states 
(one extra for the output) 

• The stationary covariance 𝑃 can be found directly by solving a 
linear system of equations of dimension 𝑛2  
– 𝑛 – total number of internal states 

• The amount of memory required is 𝑛42𝑚(𝑝 + 1) 
– 𝑚 – number of timing nodes 

– 𝑝 – number of time-steps per period (=
ℎ

𝛿
) 



Pros and cons 
Pros: 

– Analytical performance computation 
– Fast to evaluate cost for a wide range of parameters 
– Guarantees stability (in mean-square sense) if cost is finite 

Cons: 
– Simplistic timing models 

• Indepedent delays 
• Delay distributions may not change over time 

– Only linear systems and quadratic costs 
– Requires knowledge about latency distributions 

• Where do we get this from? 
• Existing scheduling theory can at best give worst-and best-case values 

– Statistical analysis 
• The calculated cost is an expected value 
• All results only hold in a mean-value sense 

– Not suitable as a basis for formal verification 
• Timing scenarios with probability zero are disregarded by the analysis 

– E.g. switching-induced instability 
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TrueTime 
• Simulator for the cyber 

parts of CPS 
• Embedded in physical 

system simulators 
(Simulink, Modelica) 

• Simulation of 
– Real-time kernels 
– Wired and wireless 

networks 

• Developed in Lund  
since 1999 
– Version 2.0 
– Large userbase 
– GPL 

12 April 2013 35 



Modeling of Computations 

36 

• Simulates an event-based 
real-time kernel 

• Executes user-defined tasks 
and interrupt handlers 

• C/C++ or M-files 

• Arbitrary user-defined 
scheduling policies 

• Real-time primitives 

• Code structured into code 
segments 

• emulate multithreading 



Modeling of Wired Networks 

37 

• Models the medium access delay and 

the transmission delay 

• A number of pre-defined data-link layer 

protocols 

– Switched Ethernet 

– CAN 

– Round Robin 

– FDMA 

– TDMA 

– CSMA/CD (Shared Ethernet) 

– Flexray 

– PROFINET IO 



Modeling of Wireless Networks 

38 

• Supports two common MAC layer 

policies:  

• IEEE 802.11 b/g (WLAN)  

• IEEE 802.15.4 (“ZigBee”) 

• (Wireless HART - implemented by ABB) 

• x and y inputs for node locations 

(2D) 

• Radio models: 

• Exponential path loss (default) 

• User-defined models to model multi-

path propagation, fading etc 



TrueTime: Networked Embedded Control 

Networked Control Loop 

CPU Schedule 

Network 
Schedule 

Control Signal 

Step Response 



New Features 

• Multicore kernels 

– Each TrueTime kernel may have multiple cores 

– Partitioned scheduling 
– ttSetNumberOfCPUs(no) 

– ttSetCPUAffinity(task,cpu) 

• Constant bandwidth servers (CBS) 

– Virtual processors 

– Temporal isolation 
– ttCreateCBS(budget,period) 

– ttAttachCBS(task,CBS) 

– ttSetCBSParameters(budget, period) 

 

10 % 

45 % 25 % 

20 % 



TrueTime: Mobile Robotics 

• Tunnel road safety scenario in RUNES 

– EU FP6 IP (2004-2007) 

– Coordinated by Ericsson  

• Stationary sensor network in a road tunnel 

• Mobile robots as mobile gateways for  
restoring connectivity among isolated 
subislands of the network 



Localization 
• Ultrasound-based 

– Active mobile robots 

– Passive stationary nodes 

• Robot broadcasts radio packet and ultrasound pulse 
”simultaneously” 

• Difference in time-of-arrival allows each reachable 
node to calculate its distance to the robot 

• Each node sends its distance measurement back to 
the robot 

• Extended Kalman Filter fuses distance measurements 
with wheel encoders 



Verification Problem 
• Robot with several microprocessors, I2C bus 

communication 
• Sensor network radio communication 

– IEEE 802.11 b/g (WLAN)  
– AODV routing protocol 

• Ultrasound localization 
• IR-based obstacle avoidance 
• Control and estimation 

 
 How verify the functionality and timeliness of this?? 
– TrueTime used for developing a simulator in parallel with the 

real physical implementation 
– Proof of concept and verification 

 



The RUNES Tunnel Scenario Model 

44 

• Six sensor nodes 

• one being the 
gateway 

• turned on and 
off 

• Three robots 

• Radio & Ultrasound 

networks 

• Animation 



Robot Submodel 

45 

• Tmote Sky 

• Radio interface & 
bus master 

• Robot controller 

• AVR Mega128 

• Compute engine 

• IR interface 

• EKF, navigation, and 
obstacle avoidance 

• AVR Mega16 

• Ultrasound interface 

• I2C bus 

• Wheel and motor 
submodel 



Wheel and Motor Submodel 

46 

 

• One AVR Mega16 for each wheel/motor 

• Simple motor models 

• Dual-drive unicycle robot dynamics model 



Animation 

47 

Gateway Obstacle 

Inactive sensor 

Active sensor 

• Both the true position of the robots and their internal 
estimate of their position are shown 

• A sensor node that is turned off will not participate in the 
message routing and in the ultrasound localization 

Partition 



Demo 



Video Demo 
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TrueTime for Simulink 

• S-function interface 

– Kernels 

– Networks  

• Task code 

– C/C++ 

– M-file script language 

 



TrueTime for Modelica 

• Network part 
– Native Modelica version available 

– External C code version for Dymola available 

• Full TrueTime 
– Flexible Mockup Interface (FMI) 

• Open source non-proprietary 
 model exchange format 

• Model Exchange 

 

• Co-Simulation 

 

 

Tool 
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TrueTime for FMI 

• Kernels and Networks are Flexible Mockup Units 
(FMUs) 
– Modelica simulation tools: 

• Dymola 

• Open-source tools: OpenModelica, JModelica 

– Non-Modelica tools that embrace FMI 

• Task code written in C 

• Work in progress 
– Vanderbilt University 

– DARPA Adaptive Vehicle Make (AVM) programme 

– TrueTime a part of the Meta toolchain for CPS 

 



Conclusions 

• Networked embedded control often implies 
temporal nondeterminism 

• New tools are needed to simplify the design 
space exploration 

• Three examples: 
– Jitter margin – worst-case stability results 
– Jitterbug – average-case stochastic performance 

analysis 
– TrueTime – simulation of real-time kernels and 

networks 

• Available through www.control.lth.se 
 

 


