
Analysis and Simulation of
Embedded Control Performance

using Jitterbug and TrueTime

Karl-Erik Årzén
Dept of Automatic Control

Lund University

Joint work with
Anton Cervin, Bo Lincoln, Dan Henriksson

Lund University

Founded in 1666
One of the largest institutes for higher

education and research in Scandinavia

with about 35 000 students

Department of Automatic Control
• One of the largest control departments

in Europe
• Founded by Prof Karl Johan Åström
• Currently:

– 10 Faculty
– 34 PhD students

• Research areas:
– Modeling and Control of Complex

Systems
– Control and Real-Time Computing
– Process Control
– Robotics
– Automotive Systems
– Biomedical Projects
– Tools

• www.control.lth.se

Contents

• Networked Embedded Control

• Stability Margin

• Average-case stochastic performance analysis
using Jitterbug

• Simulation using TrueTime

• TrueTime in Modelica

Robot
C

o
m

p
o

n
en

t

Medical

C
o

w
b

o
t

Domestic
robot

Mecha-

nics
Control

Computer

software

Actuators

Sensors C
o

m
m

u
n

ic
at

io
n

Combustion
engine

Products relying on embedded control

Control Loop Timing

• Classical control assumes deterministic sampling
– in most cases periodic

– too long sampling interval or too much jitter give poor performance or
instability

• Classical control assumes negligible or constant input-output
latencies
– if the latency is small compared to the sampling interval it can be ignored

– if the latency is constant it can be included in the control design

– too long latency or too much jitter give poor performance or instability

Networked Embedded Control Timing

• Embedded control often implies temporal non-
determinism
– multiple tasks
– preemptions, blocking, varying computation times, non-

deterministic kernel primitives, …
• Networked control often implies temporal non-

determinism
– network interface delay, queuing delay, transmission delay,

propagation delay, link layer resending delay, transport layer
ACK delay, ...

– lost packets

How does this effect performance?

• Constant delays in linear systems --- straightforward

• Sampling jitter and input-output jitter -- more
difficult

– Worst-case stability analysis
• Requires minimum and maximum values for the jitter

• Stability margin theorems by Kao & Lincoln and by Cervin

– Average-case stochastic performance analysis
• Requires a stichastic model of latencies

• Jitterbug toolbox

– Simulation
• TrueTime toolbox

Analysis of Control Performance

Analysis of Control Performance

The control performance depends on a number
of issues:

– The dynamics of the plant that is controlled

– The controller type

– The design specifications for the controller

– The nature of the disturbances

– The delay distribution

– What type of control performance that we are
interested in

Contents

• Networked Embedded Control

• Stability Margin

• Average-case stochastic performance analysis
using Jitterbug

• Simulation using TrueTime

• TrueTime in Modelica

Jitter Margin – Stability under Input-Output Jitter

Stability Under Jitter – Sampled Control Case

Jitter Margin Limitations

Jitter Margin for Input and Output Jitter

• Cervin (ACC 2012)

Contents

• Networked Embedded Control

• Stability Margin

• Average-case stochastic performance analysis
using Jitterbug

• Simulation using TrueTime

• TrueTime in Modelica

Jitterbug

Jitterbug
• Matlab-based toolbox for analysis of real-

time control performance

• Evaluate effects of latencies, jitter, lost
samples, aborted computations, etc on
control performance

• Analyze jitter-compensating controllers,
aperiodic controllers, multi-rate
controllers

• Calculation of a quadratic performance
criterion function

• Packaging of existing theory for linear
quadratic Gaussian systems and jump-
linear systems

Jitterbug Analysis

• System described using a number of
connected continuous-time and discrete-time
transfer function blocks driven by white noise

Distributed Control Loop:

Plant Sensor Actuator

Controller

Jitterbug Analysis
• The execution of the blocks is

described by a stochastic timing
model expressed as an automaton

• Each state can trigger one or more
discrete systems

• Time intervals are represented by
discrete probability distributions

Jitterbug Model - Example

Jitterbug Example Script

% Corresponds to zero delay

Jitterbug example script

Simple Example

• P(s) – Process (Inverted pendulum)

• S(z) – Sampler (perfect sampling)

• K(z) – Controller + actuator

• Lio – input output latency

2

1 S(z)

K(z)

Timing model:

Lio

Demo

Results

More complicated cases

Aperiodic Systems

• Jitterbug supports both periodic and aperiodic
systems

• Periodic:
– >calccost

– Analytical solution, reasonably fast

• Aperiodic:
– >calccostiter

– Iterative computation with possibly very slow
convergence

Internal Workings
1. Sample the continuous-time system, the noise, and the cost

function with the time-grain 𝛿

2. Translate the timing model into a Markov chain

3. Formulate the closed-loop system as a discrete-time jump
linear system

𝑥 𝑘 + 1 = Φ𝑖 𝑘 𝑥 𝑘 + 𝑒 𝑘 , Ε 𝑒 𝑘 𝑒𝑇 𝑘 = 𝑅𝑖 𝑘

 where Φ𝑖 𝑘 and 𝑅𝑖(𝑘) depends on the Markov state 𝑖

4. Compute the stationary covariance 𝑃 = Ε{𝑥𝑥𝑇} from

𝑃𝑖 𝑘 + 1 = Ε{Φ𝑖 𝑘 𝑃𝑖 𝑘 Φ𝑖 𝑘 𝑇 + 𝑅𝑖 𝑘 }

Computational Complexity

• A continuous-time system of order 𝑛 requires 𝑛 internal states

• A discrete system of order 𝑛 requires 𝑛 + 1 internal states
(one extra for the output)

• The stationary covariance 𝑃 can be found directly by solving a
linear system of equations of dimension 𝑛2
– 𝑛 – total number of internal states

• The amount of memory required is 𝑛42𝑚(𝑝 + 1)
– 𝑚 – number of timing nodes

– 𝑝 – number of time-steps per period (=
ℎ

𝛿
)

Pros and cons
Pros:

– Analytical performance computation
– Fast to evaluate cost for a wide range of parameters
– Guarantees stability (in mean-square sense) if cost is finite

Cons:
– Simplistic timing models

• Indepedent delays
• Delay distributions may not change over time

– Only linear systems and quadratic costs
– Requires knowledge about latency distributions

• Where do we get this from?
• Existing scheduling theory can at best give worst-and best-case values

– Statistical analysis
• The calculated cost is an expected value
• All results only hold in a mean-value sense

– Not suitable as a basis for formal verification
• Timing scenarios with probability zero are disregarded by the analysis

– E.g. switching-induced instability

Contents

• Networked Embedded Control

• Stability Margin

• Average-case stochastic performance analysis
using Jitterbug

• Simulation using TrueTime

• TrueTime in Modelica

TrueTime
• Simulator for the cyber

parts of CPS
• Embedded in physical

system simulators
(Simulink, Modelica)

• Simulation of
– Real-time kernels
– Wired and wireless

networks

• Developed in Lund
since 1999
– Version 2.0
– Large userbase
– GPL

12 April 2013 35

Modeling of Computations

36

• Simulates an event-based
real-time kernel

• Executes user-defined tasks
and interrupt handlers

• C/C++ or M-files

• Arbitrary user-defined
scheduling policies

• Real-time primitives

• Code structured into code
segments

• emulate multithreading

Modeling of Wired Networks

37

• Models the medium access delay and

the transmission delay

• A number of pre-defined data-link layer

protocols

– Switched Ethernet

– CAN

– Round Robin

– FDMA

– TDMA

– CSMA/CD (Shared Ethernet)

– Flexray

– PROFINET IO

Modeling of Wireless Networks

38

• Supports two common MAC layer

policies:

• IEEE 802.11 b/g (WLAN)

• IEEE 802.15.4 (“ZigBee”)

• (Wireless HART - implemented by ABB)

• x and y inputs for node locations

(2D)

• Radio models:

• Exponential path loss (default)

• User-defined models to model multi-

path propagation, fading etc

TrueTime: Networked Embedded Control

Networked Control Loop

CPU Schedule

Network
Schedule

Control Signal

Step Response

New Features

• Multicore kernels

– Each TrueTime kernel may have multiple cores

– Partitioned scheduling
– ttSetNumberOfCPUs(no)

– ttSetCPUAffinity(task,cpu)

• Constant bandwidth servers (CBS)

– Virtual processors

– Temporal isolation
– ttCreateCBS(budget,period)

– ttAttachCBS(task,CBS)

– ttSetCBSParameters(budget, period)

10 %

45 % 25 %

20 %

TrueTime: Mobile Robotics

• Tunnel road safety scenario in RUNES

– EU FP6 IP (2004-2007)

– Coordinated by Ericsson

• Stationary sensor network in a road tunnel

• Mobile robots as mobile gateways for
restoring connectivity among isolated
subislands of the network

Localization
• Ultrasound-based

– Active mobile robots

– Passive stationary nodes

• Robot broadcasts radio packet and ultrasound pulse
”simultaneously”

• Difference in time-of-arrival allows each reachable
node to calculate its distance to the robot

• Each node sends its distance measurement back to
the robot

• Extended Kalman Filter fuses distance measurements
with wheel encoders

Verification Problem
• Robot with several microprocessors, I2C bus

communication
• Sensor network radio communication

– IEEE 802.11 b/g (WLAN)
– AODV routing protocol

• Ultrasound localization
• IR-based obstacle avoidance
• Control and estimation

 How verify the functionality and timeliness of this??
– TrueTime used for developing a simulator in parallel with the

real physical implementation
– Proof of concept and verification

The RUNES Tunnel Scenario Model

44

• Six sensor nodes

• one being the
gateway

• turned on and
off

• Three robots

• Radio & Ultrasound

networks

• Animation

Robot Submodel

45

• Tmote Sky

• Radio interface &
bus master

• Robot controller

• AVR Mega128

• Compute engine

• IR interface

• EKF, navigation, and
obstacle avoidance

• AVR Mega16

• Ultrasound interface

• I2C bus

• Wheel and motor
submodel

Wheel and Motor Submodel

46

• One AVR Mega16 for each wheel/motor

• Simple motor models

• Dual-drive unicycle robot dynamics model

Animation

47

Gateway Obstacle

Inactive sensor

Active sensor

• Both the true position of the robots and their internal
estimate of their position are shown

• A sensor node that is turned off will not participate in the
message routing and in the ultrasound localization

Partition

Demo

Video Demo

Contents

• Networked Embedded Control

• Stability Margin

• Average-case stochastic performance analysis
using Jitterbug

• Simulation using TrueTime

• TrueTime in Modelica

TrueTime for Simulink

• S-function interface

– Kernels

– Networks

• Task code

– C/C++

– M-file script language

TrueTime for Modelica

• Network part
– Native Modelica version available

– External C code version for Dymola available

• Full TrueTime
– Flexible Mockup Interface (FMI)

• Open source non-proprietary
 model exchange format

• Model Exchange

• Co-Simulation

Tool

 Solver

FMU

 Model

Tool

FMU

Model

Solver

TrueTime for FMI

• Kernels and Networks are Flexible Mockup Units
(FMUs)
– Modelica simulation tools:

• Dymola

• Open-source tools: OpenModelica, JModelica

– Non-Modelica tools that embrace FMI

• Task code written in C

• Work in progress
– Vanderbilt University

– DARPA Adaptive Vehicle Make (AVM) programme

– TrueTime a part of the Meta toolchain for CPS

Conclusions

• Networked embedded control often implies
temporal nondeterminism

• New tools are needed to simplify the design
space exploration

• Three examples:
– Jitter margin – worst-case stability results
– Jitterbug – average-case stochastic performance

analysis
– TrueTime – simulation of real-time kernels and

networks

• Available through www.control.lth.se

