Viotar/Working of the violin: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
Line 47: Line 47:
|}<br/>
|}<br/>


==Werking van de viool==
==Working of the violin==
[[File:Helmholtz.PNG|frame|Border|Figuur 1: Het doorlopen van een complete Helmholtz trilling.]]
[[File:Helmholtz.PNG|frame|Border|Figure 1: A complete Helmholtz motion.]]


Anders dan bij het tokkelen op een gitaar, levert het strijken op een viool geen staande golf op. De trilling die bij het strijken van een viool wordt opgewekt is, in tegenstelling tot de trilling op een gitaar, ook niet lineair. Er ontstaat bij juist aanstrijken van een snaar een zogenaamde Helmholtz trilling. Bij deze trilling beweegt de snaar in een “V”-patroon, ook wel Helmholtz hoek genoemd.. Dit houdt in dat de snaar wordt ‘opgedeeld’ in 2 rechte segmenten die bij elkaar komen in een scherpe hoek. Deze scherpe hoek beweegt rond gedurende de toon. Hoe de snaar er tijdens deze beweging uitziet is te zien in figuur 1.<br/><br/>De Helmholtz beweging wordt veroorzaakt door twee verschijnselen op het contactoppervlak tussen de boog en de snaar die ‘stick’ en ‘slip’ worden genoemd. Tijdens de ‘stick’ periode blijft de snaar aan de boog plakken waardoor deze wordt meegenomen. Gedurende de ‘slip’ periode glijdt de snaar weer terug langs het boogoppervlak. ‘Stick’ vindt plaats wanneer de Helmholtz hoek zich tussen de boog en je hand bevindt (rechts van de boog in figuur 1), ‘slip’ vindt plaats wanneer de Helmholtz hoek zich tussen de boog en de brug bevindt (links van de boog in figuur 1).
In contrary with the guitar, a violin does not produce a stationary wave and the motion of the vibration is not linear. When a violin is excited properly, a Helmholtz motion occurs. When Helmholtz occurs the string moves in a “V” pattern, also called Helmholtz corner. This means that the string is devided into 2 straight segments that intersect with a sharp angle. This angle is moving while the string is excited. In figure 1 can be seen what the string of the violin looks like when in Helmholtz motion.<br/><br/> The Helmholtz motion occurs due to two phenomena at the contact surface between bow and string called “stick” and “slip”. During the “stick” the string sticks to the bow and during the “slip” the string slips over the contact surface. “Stick” occurs when the Helmholtz corner is between the bow and the hand, “slip” occurs when the Helmholtz corner is between the bow and the bridge of the violin. What makes playing a violin hard, is that Helmholtz only occurs when the string is excited with exactly the right combination of bow force and bow speed. When the bow force is to little the string will slip to much, when on the other hand the bowing force is too much, too much stick will occur. The position of the bow, in regard to the bridge, is also an important factor for the motion of the string.<br/> The area in which Helmholtz occurs whit a constant bowing speed is visualized in a so called Schelling diagram (figure 2). In the Schelling diagram it can be obtained what the maximum and minimum bowing force are at a certain bowing speed in order to reach a Helmholtz motion. This is a function of the distance between the bow and the bridge.
De moeilijkheid van het bespelen van een viool zit hem in het feit dat deze Helmholtz beweging alleen plaatsvindt onder de juiste combinatie van snelheid en druk op de boog. Als er in verhouding te zacht met de boog op de snaar gedrukt wordt, zal deze teveel over de snaar slippen. Wordt er echter teveel druk uitgeoefend op de boog dan zal er teveel ‘stick’ optreden. Tevens van invloed is de positie van de boog ten opzichte van de brug van de viool.
[[File:Schelleng.PNG|frame|Border|left|Figure 2: Schelleng diagram.]]
Het gebied waarin een Helmholtz trilling optreedt bij constante strijksnelheid wordt weergegeven in een zogenaamd Schelleng diagram (zie figuur 2). In dit diagram is te zien hoe hard er minimaal en maximaal gedrukt mag worden om in het Helmholtz gebied te blijven, als functie van de afstand tot de brug.
[[File:Schelleng.PNG|frame|Border|left|Figuur 2: Schelleng diagram dat het Helmholtzgebied aanduidt.]]
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>

Revision as of 19:06, 30 December 2010

Working of the violin


William Schattevoet
David Duwaer
Eric Backx
Arjan de Visser


Subpages:


Main page

Patent Research

Working of the violin

Software Design (Quantifying the signal we want to see)

Hardware Design

Interview met Eindhovens vioolbouwer Hendrik Zick

Ways to exite the string

Model


Overview:


In order to make an electronical bowing instrument it is important to know how a classic bowing instrument works. Therefore research has been done on the working of such classic bowing instruments. This page gives a brief explanation about the principles behind them, making it easier to understand what the project is all about.

Working of the violin

Figure 1: A complete Helmholtz motion.

In contrary with the guitar, a violin does not produce a stationary wave and the motion of the vibration is not linear. When a violin is excited properly, a Helmholtz motion occurs. When Helmholtz occurs the string moves in a “V” pattern, also called Helmholtz corner. This means that the string is devided into 2 straight segments that intersect with a sharp angle. This angle is moving while the string is excited. In figure 1 can be seen what the string of the violin looks like when in Helmholtz motion.

The Helmholtz motion occurs due to two phenomena at the contact surface between bow and string called “stick” and “slip”. During the “stick” the string sticks to the bow and during the “slip” the string slips over the contact surface. “Stick” occurs when the Helmholtz corner is between the bow and the hand, “slip” occurs when the Helmholtz corner is between the bow and the bridge of the violin. What makes playing a violin hard, is that Helmholtz only occurs when the string is excited with exactly the right combination of bow force and bow speed. When the bow force is to little the string will slip to much, when on the other hand the bowing force is too much, too much stick will occur. The position of the bow, in regard to the bridge, is also an important factor for the motion of the string.
The area in which Helmholtz occurs whit a constant bowing speed is visualized in a so called Schelling diagram (figure 2). In the Schelling diagram it can be obtained what the maximum and minimum bowing force are at a certain bowing speed in order to reach a Helmholtz motion. This is a function of the distance between the bow and the bridge.

Figure 2: Schelleng diagram.