PRE2019 4 Group7: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 56: Line 56:


• Help to support
• Help to support
• Give a feeling of independence to the person
• Support the person in making choices
• Have a positive impact on his/her life
• Support skills maintained or do not emphasise lost skills
• Not focus on the user as a person with disabilities, but supports the self image of being a person with abilities
• Remind the solutions that existed before
T
• The use of the products is possible by the information visible/available at all times


= State of the Art =
= State of the Art =

Revision as of 22:36, 26 April 2020

Group members

Student Group

Name Student number Email Bachelor
Eline Visser 1375369 e.a.l.visser@student.tue.nl Applied Physics
Metten de Lange 1240902 m.m.d.lange@student.tue.nl Applied Physics
Vera Holtmark van Dijkerhof 1380893 v.holtmark.van.dijkerhof@student.tue.nl Applied Physics
Sterre Cuppens 1387790 s.cuppens@student.tue.nl Psychology and Technology
Iris de Wit 1258230 i.c.d.wit@student.tue.nl Psychology and Technology

Problem statement

Objectives

Users

Types of users

Primary users

Secondary users

Tertiary users

User requirements

• Easy to understand

• Repeat

• Help to support

• Give a feeling of independence to the person

• Support the person in making choices

• Have a positive impact on his/her life

• Support skills maintained or do not emphasise lost skills

• Not focus on the user as a person with disabilities, but supports the self image of being a person with abilities

• Remind the solutions that existed before T • The use of the products is possible by the information visible/available at all times

State of the Art

Assistive technology in elderly care

Recent developments in new technology are the subject of intensive research destined to make an important contribution to the care of older people, both in institutions and at home. Electronic sensors, video-monitoring, remote health monitoring and equipment such as fall detectors, door monitors, bed alerts, pressure mats and smoke and heat alarms can improve patients’ safety, security and ability to cope at home. Since care in the community is preferable to most patients and is usually less expensive than in care homes, system using advanced technology to support people at home could benefit both patient and care provider. [1]

Loneliness and new technologies in a group of Roman adolescents

Those who use Internet most often declared having more friends who go on-line. This finding can be discussed in two perspectives. During adolescence friendship is often established on the basis of common interests and shared activities. In this case, the use of Internet could constitute an element able to launch and to facilitate the beginning of a friendship between two or more persons and to contribute toward greater cohesion in an already existing friendship. On the other side, the push toward homogeneity and similar behaviours, which often characterises groups of adolescents, could be considered a motivational factor in the use of this technology.It also emerged that those who use Internet more hold that as a result they neglect their friends and their scholastic commitments. A new technology may initially absorb time and attention usually dedicated to other things; the progressive disappearance of the novelty element could, instead,bring attention back to interests that existed prior to the new technology.The data from this research do not allow us to indicate a direction in the relationship between loneliness and the use of Internet. Due to the type of communication characterised by Internet, it could produce greater loneliness in adolescents who make greater use of it. However, it cannot be excluded that the large use of this technology is only an unsuccessful strategy put into action to face pre-existing loneliness, or that other variables intervene in the relationship between the use of Internet and loneliness. [2]

Socially Assistive Robots in Elderly Care: A Systematic Review into Effects and Effectiveness

The ongoing development of technology, specifically robots, against the background of a decreasing number of care personnel raises the question of what the potential contribution of robotics could be in rationalizing and maintaining, or even improving the quality of elderly care. Robots can contribute to health care support in terms of capacity, quality (performing very accurately and task specific), finance (support or even take over tasks of trained personnel), and experience (e.g., increased feeling of autonomy and self management). The idea of robotics playing a role in health care was launched some decades ago and has mainly been developed for physical training in rehabilitation as well as personal assistance for tasks of activities of daily living. Robotic applications supporting social behavior are a more recent development. So far, systems have been developed supporting child’s play and care for elderly with dementia. However, the uptake of these systems in care practice has been limited. One of the reasons is that there appears to be a mismatch between what is technically developed and the perceived needs within care environments.The term SIR was introduced to distinguish these robots from other robots that involve “conventional” human robot interaction, such as in tele-operation scenarios. In SIR, the robot’s goal is to develop close and effective interactions with a human for the sake of interaction itself. In contrast, in SAR, these systems are not designed to help the human being performing work tasks or saving time in routine activities, but to give assistance through social interaction to achieve progress in, for example, convalescence,rehabilitation, and learning. As such, SAR is a subsection of SIR. [3]

Scoping review on the use of socially assistive robot technology in elderly care

With an elderly population that is set to more than double by 2050 worldwide, there will be an increased demand for elderly care. The shift in societal proportions will place new pressures on all aspects of elderly care. Loneliness, for instance, is a consequence of social, psychological and personal factors. Over half of people over the age of 75 live alone and 17% of older people see family, friends or neighbours less than once a week. A recent meta-analysis showed that the impact of loneliness and isolation carries the same mortality risk as smoking 15 cigarettes a day. This poses several impediments in the delivery of high-quality health and social care. Socially assistive robot (SAR) technology could assume new roles in health and social care to meet this higher demand. These are robots adept at completing a complex series of physical tasks with the addition of a social interface capable of convincing a user that the robot is a social interaction partner. Five roles of SAR were identified: affective therapy, cognitive training, social facilitator, companionship and physiological therapy. [4]

Technology and loneliness in old age

In an attempt to contribute to a better understanding of the link between modern technology and loneliness in old age, this paper points to the vital role of individual dispositions. A construct sensitive to both technological as well as societal change, perceived obsolescence was shown to influence the way personal and telephone contacts were responded to. With low social contacts and high obsolescence being detrimental to feelings of social and societal integration in their own rights, their combination may compound feelings of loneliness far beyond additivity. Going further, feelings of being out of step with modern times were found to mediate the effects impact of low technological competence on loneliness. Given the accelerated obsolescence of both technological devices and user know-how, to keep up with technological progress may become a challenge not only for those persons who never learned how to use a computer. Thoughtful design and implementation of technology is needed to assure access to and orientation within modern society despite varying technological backgrounds and competences. [5]

Technology Implementation and Workarounds in the Nursing Home

As new systems have been explored to support medication administration, technology has become a critical part of these discussions. In response to ongoing patient safety challenges, health care organizations have implemented a variety of technological mechanisms to reduce medication errors such as computerized physician order entry, electronic medication administration record, and clinical decision support systems. However, implementation of technology has not been without risk. As technology has been developed and tested, new types of medical error and risk for error have occurred. Workarounds have been defined as “informal temporary practices for handling exceptions to normal work flow”. Exploration of WA, blocks, and the risk to patient safety is an important consideration as technology implementation moves forward in health care. As the literature has unveiled hidden risks associated with technology implementation, there is a need to understand the manner in which health care professionals interact with new technology and how work processes are adjusted as a result of technology implementation. Understanding these WA as a means of first-order problem solving is an important consideration to understanding the risk to medication safety. As new technologies are introduced, continued monitoring to identify work flow is needed so appropriate changes can be made to address the underlying problems that create work flow blocks ultimately leading to potential WA. Additionally, as technology is implemented, organizational processes that will interface with the technology must be carefully re-engineered to reduce the unintended consequences of change. [6]

Technology in dementia care

People with dementia experience progressive cognitive impairments that typically commence with short term memory problems but can encompass language deficits, difficulties initiating tasks, planning, monitoring and regulating behaviour, and visuospatial difficulties, agnosia (loss of ability to recognize familiar objects or people and apraxia (loss of ability to carry out complex purposive movements). Whilst drugs have for some time been used and approved by health organizations for the treatment of mild to moderate Alzheimer’s disease, these drugs do not cure, reverse or tackle the underlying root problem causing the dementia. Therefore in the absence of a cure, more innnovative approaches need to be developed to help promote independence and maximise quality of life. In this context, assistive technologies offer much potential and can make a very significant difference to the lives of people with dementia and to their primary caregivers. Indeed it has been noted that technologies should be part of a home package and should be provided in a thoughtful, sensitive ethical way. Technologies can assist people to maintain their independence improve quality of life. The overall opportunities technology can create for people with dementia however have to date not been fully maximised. [7]

Planning

References

  1. Miskelly, F. (2001). Assistive technology in elderly care. Age and Ageing, (30), 455–458. Retrieved from https://watermark.silverchair.com/300455.pdf.
  2. Prezza, M., Pacilli, M. G., & Dinelli, S. (2004). Loneliness and new technologies in a group of Roman adolescents. Computers in Human Behavior, 20(5), 691–709. https://doi.org/10.1016/j.chb.2003.10.008.
  3. Bemelmans, R., Gelderblom, G. J., Jonker, P., & de Witte, L. (2012). Socially Assistive Robots in Elderly Care: A Systematic Review into Effects and Effectiveness. Journal of the American Medical Directors Association, 13(2), 114-120.e1. https://doi.org/10.1016/j.jamda.2010.10.002.
  4. Abdi, J., Al-Hindawi, A., Ng, T., & Vizcaychipi, M. P. (2018). Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open, 8(2), e018815. https://doi.org/10.1136/bmjopen-2017-018815.
  5. Kaspar, R. (2004). Technology and loneliness in old age. Gerontechnology Journal, Vol 3(No 1), 42–48. Retrieved from https://journal.gerontechnology.org/archives/324-326-1-PB.pdf.
  6. Vogelsmeier, A. A., Halbesleben, J. R. B., & Scott-Cawiezell, J. R. (2008). Technology Implementation and Workarounds in the Nursing Home. Journal of the American Medical Informatics Association, 15(1), 114–119. https://doi.org/10.1197/jamia.m2378.
  7. Cahilla, S., Macijauskieneb, J., Nygårdc, J., Faulknera, J., & Hagend, I. (2007). Technology in dementia care. Technology and Disability, 19, 55–60. Retrieved from https://content.ios.press.com/download/technology-and-disability/tad00227?id=technology-and-disability%2Ftad00227.