PRE2019 3 Group6: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 1: Line 1:
=Group members=
{| class="wikitable"
| David van Son
| 1005864
|-
| Susanne Louvenberg
| 1238843
|-
| Jur Janssen
| 1247069
|-
| Bas Ohlen
| 0963529
|-
| Jeroen Meijs
| 1008703
|}
=Introduction=
=Introduction=


Line 85: Line 104:
Computer use increases risk of developing musculoskeletal disorders. Such an increase is mediated by ergonomic factors such as mouse use, remaining seated for prolonged periods, adoption of inadequate or uncomfortable postures, performing certain PC tasks, and psychosocial factors. <ref> Ortiz-Hernández, L., Tamez-González, S., Martínez-Alcántara, S., Méndez-Ramírez, I. (2003).  Computer Use Increases the Risk of Musculoskeletal Disorders
Computer use increases risk of developing musculoskeletal disorders. Such an increase is mediated by ergonomic factors such as mouse use, remaining seated for prolonged periods, adoption of inadequate or uncomfortable postures, performing certain PC tasks, and psychosocial factors. <ref> Ortiz-Hernández, L., Tamez-González, S., Martínez-Alcántara, S., Méndez-Ramírez, I. (2003).  Computer Use Increases the Risk of Musculoskeletal Disorders
Among Newspaper Office Workers </ref>.
Among Newspaper Office Workers </ref>.
== Effects of light on the workplace ==
Color plays an important role in perception of indoor spaces. A change in color on the walls alone can improve the perception of a room. <ref>K.Yildirim, A.Akalin-Baskaya, M.L.Hidayetoglu (2007). Effects of indoor color on mood and cognitive performance </ref>
The color of the lighting can also play a role. Variable light can have a positive effect on the subjective mood of people in a room. <ref>Georg Hoffmann, Veronika Gufler, Andrea Griesmacher, Christian Bartenbach, Markus Canazei, Siegmund Staggl, Wolfgang Schobersberger (2008). Effects of variable lighting intensities and colour temperatures on sulphatoxymelatonin and subjective mood in an experimental office workplace</ref>
Not only the mood can be affected however, modern LED lights <ref>Breanne K .Hawes, Tad T. Brunyé, Caroline R. Mahoney, John M. Sullivan, Christian D. Aall (2012). Effects of four workplace lighting technologies on perception, cognition and affective state </ref> and blue enriched white light <ref>Antoine U Viola, Lynette M James, Luc JM Schlangen, Derk-Jan Dijk (2008). Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality </ref> can have a positive impact on the (subjective) alertness and performance of cognitive tasks.
This does not have to come from conventional light sources, but can also come from computer screens. <ref>Chiuhsiang Joe LIN, Wen-Yang FENG, Chin-Jung CHAO, Feng-Yi TSENG (2008). Effects of VDT Workstation Lighting Conditions on Operator Visual Workload </ref>
The color of the light doesn’t seem to have an effect on the perceived room temperature however. <ref>Rupak R Baniya, Eino Tetri, Jukka Virtanen, Liisa Halonen (2016). The effect of correlated colour temperature of lighting on thermal sensation and thermal comfort in a simulated indoor workplace </ref>
==Effects of music during work or studying==
Can preference for background music mediate the irrelevant sound effect?<ref>Nick Perham, Joanne Vizard (2011). Can preference for background music mediate the irrelevant sound effect?.</ref>
Music Moves Brain to Pay Attention.<ref>Baker, Mitzi.(2007) “Music Moves Brain to Pay Attention.” Stanford School of Medicine. Stanford School of Medicine</ref>
Exposure to music and cognitive performance: tests of children and adults<ref>E.G.Schellenberg,T.Nakata,P.G.Hunter,S.Tamoto(2007). Exposure to music and cognitive performance:tests of children and adults</ref>
The Relative and Perceived Impact of Irrelevant Speech, Vocal Music and Non-vocal Music on Working Memory<ref>Thomas Alley, Marcie Greene (2008).The Relative and Perceived Impact of Irrelevant Speech, Vocal Music and Non-vocal Music on Working Memory</ref>
The Effect of Listening to Music On Concentration and Academic Performance of the Student: Cross-Sectional Study On Medical Undergraduate Students.<ref> N.Kumar, M. Wajidi, Y. Chian, Vishroothi, S.Ravandra, A. Aithal (2016)</ref>
=Group members=
{| class="wikitable"
| David van Son
| 1005864
|-
| Susanne Louvenberg
| 1238843
|-
| Jur Janssen
| 1247069
|-
| Bas Ohlen
| 0963529
|-
| Jeroen Meijs
| 1008703
|}


=Who is doing what=
=Who is doing what=

Revision as of 11:24, 13 February 2020

Group members

David van Son 1005864
Susanne Louvenberg 1238843
Jur Janssen 1247069
Bas Ohlen 0963529
Jeroen Meijs 1008703

Introduction

Problem statement and objectives

Problem statement

In our current society is the sitting position the most frequent body posture, especially in the office working industry. Many professions require working behind a desk. Students also experience those working conditions. Jans, Proper, and Hildebrandt (2007) found that working adults in the Netherlands can spend up to 12 hours sitting down on a workday[1]. Because people are sitting more hours a day, much research is done to determine the consequences of sitting for longer periods of time.


There has been done research about long-term health risk of long occupational sitting[2]. Health risk as body fatness, cancer, type 2 diabetes, cardio-vascular disease, and mortality are examined to their connection with occupational sitting. However, they conclude that there is insufficient evidence of a causal relationship between those conditions.


However, other research does shows that occupational sitting increases pain. Medical and ergonomic field studies indicate that sitting posture can be the cause of muscle, connective tissues of tendons, ligaments, and join capsules pain[3]. Chronic pain and troubles may be the result of static load for longer periods of time. The degrees of pain increased as the time of occupational sitting increases. A study by Womersley, L and May, S (2006) showed that people with backache sat for longer periods of uninterrupted sitting compared to the no backache group of people[4]. The sitting posture also determines the effects of occupational sitting. In their same study the group with postural backache also had a more flexed relaxed sitting posture. Other research confirms this result because slumped sitting position and poor shoulder posture (e.g. rounded shoulders, and head forward) causes pain due to mechanical changes that affect the function of the median nerve[5]. Shoulder protraction reduces the nerve movement and other joints are moved. In response to moving other joints, the nerve dynamics is altered which changes the local blood supply. This is harmful for the nerve function and causes the risk of neck and shoulder pain.


Backache and neck pain are one of the most frequent cause of invalidity in industry in most Western countries[6]. Kuoppala and colleagues (2008) showed in a systematic review that promoting ergonomics and a good sitting position reduces the absences from work[7]. This stresses the importance of a good sitting position, because it reduces pain for individuals but also decreases work absences for the company.


Marshall, and Gyi (2010) mention: “Environmental influences such as no support for the feet, low-friction seating material, or poor desk height can all create additional muscle work. Poor design forces the adoption of awkward and inefficient working postures that can ultimately lead to discomfort, pain, and chronic disability if adverse conditions persist.[8]. In addition to the environment influencing the sitting posture another research states that individuals with neck pain have a different perception of a ‘good’ sitting position[9]. Their sitting position is slightly different, and even a small change in head position can result in an increase of the lead on supporting structures and muscle activity[10]. This indicates that it is important to impose a sitting position on people to accomplish a good sitting position that decreases the chances of pain.


To conclude, it is of importance to have a chair that provides a good sitting position to reduce the effects of occupational sitting. However, every person has a different physique, which means that one chair would not fulfil the needs of different users. Most chairs can be to some extent be adjusted at the users wishes. But as stated above, users who experience backache do not always have the correct idea of a ‘good’ sitting position. In the current working environment, employees do not have a fixed sitting position because of flex-work spaces. Therefore, the user needs to adjust the chair every day to have a good sitting position. To overcome all the problems stated above, this project envisions an automatic chair that helps the user with establishing a good sitting position.

Objectives

Approach, milestones and delivarables

Approach

Our approach is that we start by gathering information regarding our topic, the state of the art and the relevance of our research. We will then hold a survey among people who use adjustable chairs often, in which we want to find out which part(s) of the chair they most often adjust. Using the survey data, we will research if and how we can automate this adjustment, what the objective best position is, and what people feel the best position is. Lastly, we will make a prototype of the automatic seat adjuster, test whether is actually improves the posture, and get to know what people think of it.

Milestones

  • Evaluation of the best working posture.
  • Made and held the survey
  • Determined the most relevant adjustable part of a chair
  • Determined the sensors that are needed to detect a person’s working posture.
  • Made a prototype of the most relevant adjustable part
  • Full test evaluation of the prototype
  • User evaluation of the prototype

Deliverables

  • This Wiki page containing all our research and findings.
  • Survey results about the most relevant adjustable part.
  • A prototype of the most relevant adjustable part.
  • Test and user evaluation of the prototype.
  • A presentation at the end of the project.

Planning

User and user requirements

Users

Primary users: -office workers -students

Secondary users: -Companies that have the smart workplace installed

Tertiary users: -Technicians for installation and maintenance -Colleagues of the office workers

User requirements

The primary users need a comfortable and easy to use workspace that helps them to be more productive as well as help them maintain a healthy posture. The companies need an easy to install, cost friendly and reliable workplace that works universal for each employee. For the technicians it has to be easy to maintain and for the colleagues it should hinder their work.

State of the Art

Posture effect on performance

Posture plays an important role in performance. Poor posture can lead to worse task performance [11] while also adding stress to the spine and balance muscles [12].

Posture is also a tell-tale sign of engagement, it is even possible to estimate engagement purely on posture[13].

Currently it is possible to detect sitting posture using a regular office chair equipped with force transducers[14]. It is also possible to detect posture using mobile devices, which is more accurate but also more intrusive[15].

Using a posture assistance device, it is possible to correct posture and thereby improve performance, even in a dynamic environment, such as surgery [16].

In this paper research two groups were studied, symptomatic and asymptomatic office workers. All subjects demonstrated an 10% increase in forward head posture from their relaxed sitting postures with the computer display. No substantial evidence for posture changing over a working day was found. [17].

The high complained of musculoskeletal disorders is due to awkward postures, unsuitable workstation and lack of knowledge related to the areas to apply in everyday routine and it shows that working postures have a direct contribution on musculoskeletal disorders complained by the office workers in Putrajaya. [18].

Given the association between RULA (rapid upper limb assessment) score and the prevalence of the problems, reducing RULA score by designing ergonomic workstation may reduce the prevalence of WMSDs (work-related musculoskeletal disorders) among the workers. [19].

Computer use increases risk of developing musculoskeletal disorders. Such an increase is mediated by ergonomic factors such as mouse use, remaining seated for prolonged periods, adoption of inadequate or uncomfortable postures, performing certain PC tasks, and psychosocial factors. [20].

Who is doing what

Week 1

Name Time spent Break-down
David 11 h Introductory lecture (2h), Brainstorm (1h), Studied papers [1-6] (4h), Wrote summary (1h), Group meeting (2h), formatting wiki page (1h)
Jur 10 h Introductory lecture (2h), Group meeting (2h), Studied papers [7-10] and made summary (4h), Brainstorm about possible topics (1h), Approach/Milestones/Deliverables (1h)
Jeroen 9 h Introductory lecture (2h), Group meeting+brainstorm (2.5h), Studied papers(4h), Made user requirements (0.5h)
Bas 9 h Introductory lecture (2h), Group meeting (2h), Brainstorm (1h), Studied papers, Update wiki(4h),
Susanne 10.5 h Introductory lecture (2h), Brainstorm (0.5h), Group meeting (2h), Studied papers (2h), Wrote problem statement (4h)

Week 2

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h Tutor meeting (0.5h), Group meeting (1.5), Made enquête (1h), Wrote objectives (2h)

Week 3

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

Week 4

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

Week 5

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

Week 6

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

Week 7

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

Week 8

Name Time spent Break-down
David h
Jur h
Jeroen h
Bas h
Susanne h

References

  1. Jans, M.P., Proper, K.I. & Hildebrandt, V.H. (2007) Sedentary behavior in Dutch workers: differences between occupations and business sectors. Am J Prev Med, 33(6), 450-4.
  2. van Uffelen, J.G.Z., Wong, J., Chau, J.Y., et al. (2010). Occupational sitting and health risks: a systematic review. Am J Prev Med, 39(4), 379-88.
  3. Grandjean, E., & Hünting, W. (1977). Ergonomics of posture - review of various problems of standing and sitting posture. Applied ergonomics, 8(3), 135-140.
  4. Womersley, L., & May, S. (2006). Sitting posture of subjects with postural backache. Journal of Manipulative and Physiological Therapeutics, 29(3), 213-218.
  5. Dilley, A., Lynn, B., Lees, R., & Julius, A. (2004). Shoulder posture and median nerve sliding. Bmc Musculoskeletal Disorders, 5(1), 1-7.
  6. Watson, P. J., Main, C. J., Waddell, G., Gales, T. F., & Purcell-Jones, G. (1998). Medically certified work loss, recurrence and costs of wage compensation for back pain: a follow-up study of the working population of Jersey. British journal of rheumatology, 37(1), 82-86.
  7. Kuoppala, J., Lamminpaa, A., Husman, P. (2008). Work health promotion, job well-being, and sickness absences—a systematic review and meta-analysis. J Occup Environ Med, 50(11), 1216 -27.
  8. Marshall, S., & Gyi, D. (2010). Evidence of health risks from occupational sitting: where do we stand?. American journal of preventive medicine, 39(4), 389-391.
  9. Edmondston, S., Chan, H., Chi Wing Ngai, G., Warren, M., Williams, J., Glennon, S., & Netto, K. (2007). Postural neck pain: An investigation of habitual sitting posture, perception of ‘good’ posture and cervicothoracic kinaesthesia. Manual Therapy, 12(4), 363-371.
  10. Harms-Ringdahl K, Ekholm J, Schuldt K, Nemeth G, Arborelius UP. (1986). Load moments and myoelectric activity when the cervical spine is held in full flexion and extension. Ergonomics 29, 1539-52.
  11. Straker, L. M., Pollock, C. M., & Mangharam, J. E. (1997). The effect of shoulder posture on performance, discomfort and muscle fatigue whilst working on a visual display unit. International Journal of Industrial Ergonomics, 20(1), 1-10. doi:10.1016/S0169-8141(96)00027-3
  12. Sahu, M., Alfred Sunny, K., Kumar, M. W., Baburao, G., & Gnanasaravanan, S. (2019). Effect of work postures on the musculoskeletal stresses on computer aided designers and office staff working on computer in india. International Journal of Scientific and Technology Research, 8(11), 1120-1123. Retrieved from www.scopus.com
  13. Nomura, K., Iwata, M., Augereau, O., & Kise, K. (2019). Estimation of student’s engagement based on the posture. Paper presented at the UbiComp/ISWC 2019- - Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, 164-167. doi:10.1145/3341162.3343767 Retrieved from www.scopus.com
  14. Schrempf, A., Schossleitner, G., Minarik, T., Haller, M., & Gross, S. (2011). PostureCare - towards a novel system for posture monitoring and guidance. Paper presented at the IFAC Proceedings Volumes (IFAC-PapersOnline), , 44(1 PART 1) 593-598. doi:10.3182/20110828-6-IT-1002.02987 Retrieved from www.scopus.com
  15. Estrada, J. E., & Vea, L. A. (2016). Real-time human sitting posture detection using mobile devices. Paper presented at the Proceedings - 2016 IEEE Region 10 Symposium, TENSYMP 2016, 140-144. doi:10.1109/TENCONSpring.2016.7519393 Retrieved from www.scopus.com
  16. Karlovic, K., Pfeffer, S., Maier, T., Heidingsfeld, M., Ederer, M., & Sawodny, O. (2015). Effects on performance when using a posture assistance device – results of a usability evaluation in laboratory setting. Procedia Manufacturing, 3, 1395-1402. doi:10.1016/j.promfg.2015.07.301
  17. Szeto, G.P.Y., Straker, L., Raine, S. (2002). A field comparison of neck and shoulder postures in symptomatic and asymptomatic office workers
  18. Mansor, C.H.C, Zakaria, S.E., Dawal, S.Z.M. (2013). Investigation On Working Postures And Musculoskeletal Disorders Among Office Workers In Putrajaya
  19. Choobineh, A., Tabatabaei, S.H., Tozihian, M., Ghadami, F. (2007). Musculoskeletal problems among workers of an Iranian communication company
  20. Ortiz-Hernández, L., Tamez-González, S., Martínez-Alcántara, S., Méndez-Ramírez, I. (2003). Computer Use Increases the Risk of Musculoskeletal Disorders Among Newspaper Office Workers