PRE2018 4 Group4: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
Line 160: Line 160:


*Feil-Seifer, D., & Matarić, M. J. (2010). Dry your eyes: Examining the roles of robots for childcare applications. Interaction Studies, 11(2), 208–213. https://doi.org/10.1075/is.11.2.05fei
*Feil-Seifer, D., & Matarić, M. J. (2010). Dry your eyes: Examining the roles of robots for childcare applications. Interaction Studies, 11(2), 208–213. https://doi.org/10.1075/is.11.2.05fei
Summary: Sharkey & Sharkey (2010) rose ethical questions about using robots for childcare. The argument for this was that the use of robots could lead to social neglect of the child. For this scenario to happen, the parents and children should be convinced that the robot is more capable than it actually is. It is shown that even children see the limitations of robots in an early stage. Thus, robots may facilitate some issues, they are not specific to robots as humans are very well capable of detecting the flaws. Detecting them not is just bad parenting. The argument is based on the assumption that robots will replace human interaction. However, it is shown that robot technologies can also improve human-human interaction.
Summary: Sharkey & Sharkey (2010) rose ethical questions about using robots for childcare. The argument for this was that the use of robots could lead to social neglect of the child. For this scenario to happen, the parents and children should be convinced that the robot is more capable than it actually is. It is shown that even children see the limitations of robots in an early stage. Thus, robots may facilitate some issues, they are not specific to robots as humans are very well capable of detecting the flaws. Detecting them not is just bad parenting. The argument is based on the assumption that robots will replace human interaction. However, it is shown that robot technologies can also improve human-human interaction by supplementing it.





Revision as of 10:53, 8 May 2019

Student Student Number
Anne Aarts 1026630
Rick van Beek 1243355
Bjarne Kraak 1262580
Paul van Dijk 1278347
Pelle Schram 1252089


First meeting (6 may 2019)

Planning

Week Datum start ToDo/Milestones Taakverdeling
1 29 April Werkplan, Literatuuronderzoek, Nao robot regelen. Nao robot regelen: Anne, Literatuur onderzoek: iedereen, wikipedia inrichten: Pelle
2 6 May Literatuur onderzoek bespreken en bedenken op welke plek de robot op zijn plaats zou zijn. Scholen benaderen. Enquête maken: Paul, scholen benaderen: Rick
3 13 May Drie scholen bezoeken. Iedereen
4 20 May Praktijkonderzoek bespreken, taken kiezen die uit het onderzoek zijn gekomen. Iedereen
5 27 May Taak uitwerken. Iedereen
6 3 June Robot programmeren. Programmeren: Rick en Bjarne
7 10 June Robot programmeren en testen in praktijk. Iedereen
8 17 June 20 June presentatie, wiki afronden. Iedereen


Discussion

Literature search pointed out that acceptance of robots in educational roles is a difficult subject. We chose to focus on educational robots in elementary school or below, as it includes a major part of child upbringing. We will focus on a robot with a more supportive role than an actual replacement. There is high demand for teachers, and robots form a solution to fill this gap between supply and demand. We want to conduct research on the possible functions the robot can fill in the classroom, to subsequently compare them and create an expectation. This expectation can thereafter be compared to a practical example (asking teachers), to subsequently elaborate and conclude the best function. Furthermore, we want to program this function in to an actual robot if possible (i.e. "Nao" robot).

We want to research the possible social functions the robot could fill combined with the ethical questions that arise when doing so, as this is the main problem with acceptance towards robots used for educational purposes in early stages of life.

Problem statement

Develop a robot technology in kindergarten which assists the teacher in education and reliefs work stress, with the quality of education staying the same or improving. Conduct extensive literature research and acquire practical experience to determine the best placement fit for the robot.

Target audience: kindergarten (4-6 years). Children are in one of their primary development stages, robots can have a major influence on them.
Objectives: educational quality stays the same/improves with the use of assistive robots. Elevating stress for the teachers.

With the pracitcal research, we want to ask teachers where they would see the robot fit best, rather than asking whether or not they want a robot in their classroom.


Users:

  • Children: same quality of education. More equal distribution of attention among the children. More personal attention in general.
  • Teacher: relief work stress.
  • Parents: acceptance of the robots in the environment of the child. Give away a part of the child’s nursery.
  • Government: better quality of education, less money spent if possible.
  • Enterprises: want business opportunities.

Approach

The approach of this project will be as following:

  1. Literature research to generate mutual understanding of the subject.
  2. Create a plan where the robot could fit, a general idea and discuss the several functions of a kindergarten teacher.
  3. Subsequently, visit a kindergarten class and experience the environment. Ask the teacher what their perspective is on the best placement of the robot in the class by discussing the previously made plan.
  4. Thereafter, discuss and choose the best placement of the robot in the class.
  5. Lastly, program the Nao to perform that certain function.

Milestones: know best position for the robot. Robot performs an actual task.
Deliverable: lend “Nao” robot and program a task.

SotA - Literature Study

The scientific articles found are divided in the next topics for easy classification:

  • Roles
  • Ethics
  • Acceptance
  • Areas

Teachers and burnouts

  • Heus, P., & Diekstra, R. (1999). Do Teachers Burn Out More Easily? A Comparison of Teachers with Other Social Professions on Work Stress and Burnout Symptoms. In R. Vandenberghe & A. Huberman (Eds.), Understanding and Preventing Teacher Burnout: A Sourcebook of International Research and Practice (The Jacobs Foundation Series on Adolescence, pp. 269-284). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511527784.019

Summary:

  • Ross, S.W., Romer, N., Horner, R.H. (2012). Teacher Well-Being and the Implementation of School-Wide Positive Behavior Interventions and Supports. Journal of Positive Behaviour Interventions, 14(2), 118-128.

Summary: Teacher well-being has become a major issue in the United States with increasing diversity and demands across classrooms and schools. This study analyzed the relation between outcomes of teacher well-being, including burnout and efficacy, and the implementation of School-Wide Positive Behavioral Interventions and Support.

  • Boujut, E., Dean, A., Grouselle, A. et al. J Autism Dev Disord (2016). Comparative Study of Teachers in Regular Schools and Teachers in Specialized Schools in France, Working with Students with an Autism Spectrum Disorder: Stress, Social Support, Coping Strategies and Burnout. 46: 2874. https://doi-org.dianus.libr.tue.nl/10.1007/s10803-016-2833-2.

Summary: Study comparing teachers of regular schools and specialized schools with regard to, among others, stress and burnout. Specialized teachers are less emotionally exhausted, as they have adjustment due to their training, experience, and tailored classroom conditions.

  • Adrijana Višnjić Jevtić & Antonija Halavuk (2018) Early childhood teachers burn-out syndrome – perception of Croatian teachers, Early Years, DOI: 10.1080/09575146.2018.1482260

Summary:

Summary:

Roles
The next articles are classified under the topic roles:

  • Osada, J., Ohnaka, S., & Sato, M. (2006). The scenario and design process of childcare robot, PaPeRo. Proceedings of the 2006 ACM SIGCHI international conference on Advances in computer entertainment technology - ACE '06, . https://doi.org/10.1145/1178823.1178917

Summary: Eight developed applications for the use of robots in childcare were developed: conversation, face recognition, touch, roll-call, quiz-master, phoning, greetings and story teller.

  • Tanaka, F., Cicourel, A., & Movellan, J. R. (2007). Socialization between toddlers and robots at an early childhood education center. Proceedings of the National Academy of Sciences, 104(46), 17954–17958. https://doi.org/10.1073/pnas.0707769104

Summary: After 45 days of immersion in a childcare center throughout a period of 5 months, long-term bonding and socialization occurred between toddlers and a state-of-the-art social robot. Rather than losing interest, the interaction between children and the robot improved over time. Children exhibited a variety of social and care-taking behaviors toward the robot and progressively treated it more as a peer than as a toy.

  • Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo, S. H. (2016). A Review on the Use of Robots in Education and Young Children. Journal of Educational Technology & Society, 19(2), 148-163. https://dr.ntu.edu.sg/handle/10220/42422

Summary: The robot's influence on children's skills development could be grouped into four major categories: cognitive, conceptual, language and social skills.

Acceptance
The next articles are classified under the topic acceptance:

  • Shiomi, M., & Hagita, N. (2015). Social acceptance of a childcare support robot system. 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), . https://doi.org/10.1109/roman.2015.7333658

Summary: This journal article looks into the social acceptance of robot technologies in childcare in comparison to two present childcare technologies, like baby food. Therefore, a web-based survey as well as a field test was performed. Confirming their hypothesis, the social acceptance of childcare robot system was less than of the known childcare support technologies. However, when tested in the field, the social acceptance was higher than following the web-based survey. To investigate acceptance, three points of view were used: safety and trustworthy, diligence, and decreasing workload. For designing a childcare support system, they interviewed teachers at nursery schools. They found out that there were two options where a robot could help: 1. robot system that helps with paperwork; and 2. robot system that entertains children.

Summary: SAR has great potential in teaching realm. The successful adaptation and integration of SAR in preschool and elementary school classrooms depends on the teachers’ acceptance of it.

Summary: This study looks into the first time acceptance (SAR) of primary and school teachers.

  • Serholt, S. (2018). Breakdowns in children's interactions with a robotic tutor: A longitudinal study

Summary: There are some problems faced in reality with a robotic tutor four of them stood out these were (1) the robot's inability to evoke initial engagement and identify misunderstandings, (2) confusing scaffolding, (3) lack of consistency and fairness, and finally, (4) controller problems.

  • Kulviwat, S. , Bruner II, G. C., Kumar, A. , Nasco, S. A. and Clark, T. (2007), Toward a unified theory of consumer acceptance technology. Psychology & Marketing, 24: 1059-1084. doi:10.1002/mar.20196

Summary: findings suggest that substantial improvement in the prediction of technology adoption decisions is possible by use of the CAT model with its integration of affect and cognition.


Ethics
The next articles are classified under the topic ethics:

Summary: In other articles, issues like privacy, deception and psychological damage are raised concerning robots for childcare. This article contributes to that discussion. Following this article, four things should be looked in to: 1. Regulate robot usages such at with toys or some sport installations. Including informative messages could help. 2. Change the analysis based on the age of the group. Beneath 5 years, it is shown that using robots can be harmful, above, it isn't. 3. Use data stored by robots in ethical way and destroy it in the cases where the parents don't are the owner. Storing (and destroying) the data should be law enforced. 4. Receiving no care, which happens when children are left alone, is way worse than receiving robot care. Robots could be a solution to the problems that arise from being home alone often.

  • Feil-Seifer, D., & Matarić, M. J. (2010). Dry your eyes: Examining the roles of robots for childcare applications. Interaction Studies, 11(2), 208–213. https://doi.org/10.1075/is.11.2.05fei

Summary: Sharkey & Sharkey (2010) rose ethical questions about using robots for childcare. The argument for this was that the use of robots could lead to social neglect of the child. For this scenario to happen, the parents and children should be convinced that the robot is more capable than it actually is. It is shown that even children see the limitations of robots in an early stage. Thus, robots may facilitate some issues, they are not specific to robots as humans are very well capable of detecting the flaws. Detecting them not is just bad parenting. The argument is based on the assumption that robots will replace human interaction. However, it is shown that robot technologies can also improve human-human interaction by supplementing it.


Areas
The next articles are classified under the topic areas:

  • Keren, G., & Ben-David, A., & Fridin, M. (2012). Kindergarten assistive robotics (KAR) as a tool for spatial cognition development in pre-school education. IEEE/RSJ International Conference on Intelligent Robots and Systems. https://ieeexplore.ieee.org/abstract/document/6385645

Summary: Kindergarten Assistive Robotics (KAR) is an innovative tool that promotes children's development through social interaction. Humanoid assistive technology can be applied in a kindergarten to assist the educational staff in educational tasks. The procedure presented promotes children’s geometrical thinking and spatial cognition.

Summary: NAO facilitates kindergarten educational process by utilizing a Humanoid robot called NAO. NAO robot will be programmed to support fun learning through providing many activities and games.

Summary: In most of the studies incorporating robotic systems in the educational process (Benitti, 2012), robots have been used as platforms for the teaching of subjects closely related to the robotics field. In contrast, the KindSAR system, using social interaction as a basis, serves to actively assist teachers in a preschool educational setting. Once accepted by the children, and under the vigilance of the teacher, the KindSAR robot has the potential to become an important instrument in promoting children’s cognitive and social development, and in improving routine educational work in kindergarten settings.

Summary: In most of the studies that incorporate robotic systems in the educational process (Benitti, 2011), robots have been used as platforms for the teaching of subjects closely related to the robotics field. In contrast, the KindSAR system, using social interaction as a basis, serves to actively assist teachers in a preschool educational setting.


Second meeting (13 may 2019)

Third meeting (20 may 2019)

Fourth meeting (27 may 2019)