PRE2018 3 Group12

From Control Systems Technology Group
Jump to navigation Jump to search

<link rel="shortcut icon" href="https://www.tue.nl/favicon-64.ico" type="image/x-icon"> <link rel=http://cstwiki.wtb.tue.nl/index.php?title=PRE2018_3_Group4&action=edit"stylesheet" type="text/css" href="theme.css">

Problem Statement

People with a visual impairment, will never be able to sense the world as people without visual impairment. Thanks to guide dogs and white canes, however, these people are able to enjoy independence when it comes to navigating outside areas. Yet, these measures cannot give a representation of the world around them beyond the range of the cane or the movement of the dog. Using technology, that might change. Using sensors these people could be given the ability to sense more than their immediate surroundings, sense objects which their white cane didn't contact or the dog ignored because it was not in the way.

Group Members

Name Study Student ID
Harm van den Dungen Electrical Engineering 1018118
Nol Moonen Software Science 1003159
Johan van Poppel Software Science 0997566
Maarten Flippo Software Science 1006482


Users

The users we are designing the technology for, are the visually impaired. People with a visual disability often need aids to get through their daily life. For a blind or partially blind person, the simplest tasks can be hard to complete. While there are existing tools, such as guiding dogs and white canes, these are not always sufficient.

The most important requirement of the technology is that it offers a valid alternative to existing aids. This does not necessarily mean that the technology better support the users disability than alternatives, it could also mean that it is simply cheaper. If the product is cheaper it can still be an option for people not able to afford more costly alternatives. There are many factors classifying the value of a product. Two important factors are the production and selling costs, and the support given and the usability of the technology.

Different designs

gloves

shoes

Bril?

Geluid toevoegen zoals vleermuizen? -> Doppler effect gebruiken voor bewegingen. -> dit kan gedaan worden met icm radar -> groot bereik

Deliverables

A prototype that aids blind people roam around areas, that are unknown to them. This prototype is based on the design of last year[1]. From this design, a new design was made that tries to improve on the issues the previous design faced. Additionally, a wiki will be made that helps with giving additional information about the protoype, such as costs, components and it gives some backstory of the subject. Finally, a presentation is made regarding the final design and prototype.

Requirements

Approach

To build this prototype designed for the users, in this case, the visually impaired, first there has to be known what the actual problem is. To acquire this knowledge, information about problem is gathered. Afterwards, using this problem, information about the state-of-the-art of most notably technologies for visually impaired, radar-sensors and radar-Doppler-sensors could be gathered. Combining all the information will be used to make preliminary design that fills the needs of the users. After the preliminary design is finished, building the prototype can be started. During the making of the design and building the prototype, it is probable that some things might not go as planned and it will be necessary to go back steps, to make an improvement on the design in the end. When the prototype is finished, it is tweaked to perform as optimal as possible using several tests. Finally, everything will be documented in the wiki.

Milestones

  • Completing the design of the prototype
  • Finish building the prototype
  • Prototype is fully debugged and all components work as intended
  • Prototype follows requirements
    • 50%
    • 75%
    • 100%

References Harm

[2] [3] [4] [5] [6] [7] [8]

References Johan

References Maarten

[9]

References Nol

[10] [11] [12] [13] [14] [15] [16]


References

  1. Boekhorst, B, te. Kruithof, E. Cloudt, Stefan. Cloudt, Eline. Kamperman, T. (2017). Robots Everywhere PRE2017 3 Groep13. http://cstwiki.wtb.tue.nl/index.php?title=PRE2017_3_Groep13
  2. Pereira, A., Nunes, N., Vieira, D., Costa, N., Fernandes, H. & Barroso, J. (2015). Blind Guide: An ultrasound sensor-based body area network for guiding blind people. Procedia Computer Science, 67, 403–408. https://doi.org/10.1016/j.procs.2015.09.285
  3. Al-Mosawi, Ali. (2012). Using ultrasonic sensor for blind and deaf persons combines voice alert and vibration properties. Research Journal of Recent Sciences. 1. https://www.researchgate.net/publication/235769070_Using_ultrasonic_sensor_for_blind_and_deaf_persons_combines_voice_alert_and_vibration_properties
  4. T. Ifukube, T. Sasaki and C. Peng, "A blind mobility aid modeled after echolocation of bats," in IEEE Transactions on Biomedical Engineering, vol. 38, no. 5, pp. 461-465, May 1991. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=81565&isnumber=2674
  5. Bousbia-Salah, M., Bettayeb, M. & Larbi, A. J Intell Robot Syst (2011) 64: 387. https://doi.org/10.1007/s10846-011-9555-7
  6. Bousbia-Salah M., Fezari M. (2007) A Navigation Tool for Blind People. In: Sobh T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://link.springer.com/chapter/10.1007%2F978-1-4020-6268-1_59
  7. P. Mihajlik, M. Guttermuth, K. Seres and P. Tatai, "DSP-based ultrasonic navigation aid for the blind," IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), Budapest, 2001, pp. 1535-1540 vol.3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=929462&isnumber=20096
  8. L. Dunai, G. P. Fajarnes, V. S. Praderas, B. D. Garcia and I. L. Lengua, "Real-time assistance prototype — A new navigation aid for blind people," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 1173-1178. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5675535&isnumber=5674827
  9. Cassinelli, Alvaro. Reynolds, C. Ishikawa, M. (2006). Augmenting spatial awareness with Haptic Radar. https://ieeexplore.ieee.org/abstract/document/4067727
  10. Bohonos, S., Lee, A., Malik, A., Thai, C., & Manduchi, R. (2007). Universal real-time navigational assistance (URNA). In Proceedings of the 1st ACM SIGMOBILE international workshop on Systems and netw
  11. Fernandes, H., Costa, P., Filipe, V., Hadjileontiadis, L., & Barroso, J. (2010). Stereo vision in blind navigation assistance. World Automation Congress (WAC), 2010, 1–6. Retrieved from https://s3.amazonaws.com/academia.edu.documents/6728529/isiac477.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1549802412&Signature=dffH1larBxGuWE5K3e2EHFlru5g%3D&response-content-disposition=inline%3B filename%3DStereo_vision_in_blind_navigation_assist.pdf
  12. Dunai, L., Fajarnes, G. P., Praderas, V. S., Garcia, B. D., & Lengua, I. L. (2010). Real-time assistance prototype- A new navigation aid for blind people. In IECON Proceedings (Industrial Electronics Conference) (pp. 1173–1178). IEEE. https://doi.org/10.1109/IECON.2010.5675535
  13. TREUILLET, S., & ROYER, E. (2010). OUTDOOR/INDOOR VISION-BASED LOCALIZATION FOR BLIND PEDESTRIAN NAVIGATION ASSISTANCE. International Journal of Image and Graphics, 10(04), 481–496. https://doi.org/10.1142/S0219467810003937
  14. Faria, J., Lopes, S., Fernandes, H., Martins, P., & Barroso, J. (2010). Electronic white cane for blind people navigation assistance. World Automation Congress (WAC), 2010, 1–7. Retrieved from https://ieeexplore.ieee.org/abstract/document/5665289/citations#citations
  15. Legro, R. S., Sauer, M. V., Mottla, G. L., Richter, K. S., Li, X., Dodson, W. C., & Liao, D. (2010). Effect of air quality on assisted human reproduction. Human Reproduction, 25(5), 1317–1324. https://doi.org/10.1093/humrep/deq021
  16. Jacquet, C., Bourda, Y., & Bellik, Y. (2005). A Context-Aware Locomotion Assistance Device for the Blind. In People and Computers XVIII - Design for Life, Proceedings of HCI 2004 (pp. 315–328). London: Springer London. https://doi.org/10.1007/978-3-540-27817-7_64