PRE2015 3 Groep2 week1

From Control Systems Technology Group

Revision as of 10:30, 21 February 2016 by S147064 (Talk | contribs)
Jump to: navigation, search


The idea and State of the Art

Drones can take goods that are ordered from the storage to somebodies house. The delivery is quick and orders can be handled a lot faster. This way, delivery companies can handle more orders at a higher rate. But people also get the items they have ordered really quick, which helps the satisfaction. We will distinguish two cases, in the first case drones that are used in urban areas, need to be navigated by a drone pilot, for safety reasons, since autonomous flying is not yet that advanced to safely navigate through crowded urban areas. The second case is where drones can potentially fly autonomously in rural areas or less urban areas. In both cases the drone can autonomously execute the landing when a landing zone is insight that is not obstructed.

They say that autonomous flying is not the main problem of technology anymore, some companies already want to carry out their autonomous drone in the near future [1]. Those companies however, are using less urban areas (our second case) for testing and we are curious about how their drones are going to hold in our first case. Drones need to be more reliable, they still have a tendency to crash and run into objects. Some experiments, for example from MIT, are getting better at avoiding object autonomously [3], but this problem is still big because of unexpected events that asks the drone to react very quick. Energy consumptions could also be a problem [2]. For long flights the drones need large batteries, but bigger batteries also means less space for cargo.

Another problem with delivery drones these days is the ‘problem of the last meters’. These last problems aren’t so much about the technology, since most of it already exists, but how to implement all these technologies to make it actually work. These problems are for example: how do we deliver packages in (high) apartment buildings and how do people (and animals) react to these kind of deliveries [4]. The article from the Washington Post gives a great start to start asking questions which aren’t technical, but more to the side of users. What do we want as society?

The problem with the battery-life as given above can, for example, be fixed (maybe until there are better batteries) by changing the battery of the delivery drone in the air [5]. The concept Amazon Prime Air is the best example of the given idea [6], which is (unfortunately) still a concept and not working yet. Also Google [7] and Walmart [8] are joining the competition to get the first working delivery drones ready. These three competitors all want to be the first company that can use the drones, which means that a lot of research (and money) is involved. The problem those companies are working on is the reliability of the drones.

Our idea is to look at drones and find out what the best human interaction is when they want to land. Do the buyers have to put an big A in their garden? How does this work if you live on the 3rd floor? What if the neighbours also bought a package that is due at the same time? Maybe we don’t need the pilots, but we can let the buyers fly their own package the last meters? Are the buyers home at the time the package arrives? all those questions together, what can we expect from buyers and how are we going to interact with them to let the landing go smooth?

USE/Impact → who is benefiting?

Primary user

  • Consumers, people who order online
  • Drone pilots

Secondary users

  • Companies and shopkeepers
  • Drone developers
  • Drone manufacturers
  • Legislature

Tertiary users

  • Mechanics
  • Safety instances (in case of accidents)
  • People walking/using the streets
  • Other airspace users

Needs of those users


The consumers demand fast, trustworthy and safe delivery of their packages. Note that fast delivery is not necessarily a need, more than a wish or desire. Also no discrete value can be given to what is considered as fast delivery. Trustworthy delivery means the guarantee that the package is delivered withing the agreed time limit without huge delays or high chance of cancellation.

Safe delivery covers several parts. First the guarantee that the package arrives without being damaged during its trip. Second comes the guarantee that the package is not stole on the way. Last comes the demand that no damage is done by the drone to any property of the consumer during the landing.

Drone pilots

Pilots that will navigate the drones, will need adequate training and specialization to be able to safely navigate these drones through public airspace, especially in urban environments. A training facility is therefore needed and an organization that supplies drone pilot licenses will be needed. In areas with few tall buildings, autonomous drones might be used.

Companies and shopkeepers

Companies and shopkeepers will be the ones providing the service of drone delivery. Therefor they will take a large portion of the responsibility for the drones. Their needs will lay in reliability of the drones as well as flexibility. With flexibility, in this case, being able to fly long distances or multiple flights after each other without (long) charging is meant. Another important need for companies is for the drones to be cheap, or at least affordable. A right balance between price and quality must be found. Also for they are to provide the service to the consumers, consumers needs automatically become needs for companies and shopkeepers as well.

Drone developers and manufacturers

Of course with the increasing use of drones, companies will be able to make money with it. Also new developments will be stimulated. For companies producing drones the ease of producing will be an important need as well as the expense of separate parts. These parts need to be modular in order to customize the drone to fit its environment to optimize flying conditions. Furthermore, when parts become interchangeable, drones can be quickly repaired and upgraded without altering the core parts for future use.


New legislation must be designated that describes in which environments drones are allowed to navigate autonomously and in which areas it is unsafe to do this. Also a consensus about safe flying altitudes for drones must be established. Rules and requirements for a drone pilot license need to determined. During flights where drones are operating autonomously, liability becomes an important obstacle since it is not clear who should take responsibility in an accident.

Generally, taking full responsibility as the drone producer can be seen as a generous gesture towards customers and will also push the development of autonomous vehicles onto the main audience. Other autonomous machine producers have already done so: “Volvo, Google and Mercedes have now all said that they will accept full liability if their self-driving vehicles cause a collision”[9].


Easy to repair or preform maintenance as well as safety doing so, due the fact that the drone parts are produced in a modular fashion. This makes it also cheap and environment friendly since it produces less waste as you only need to throw away the broken part instead of the whole package.

Safety instances

A need or wish for safety instances it to have the drones to be able to fly without accidents, for their priority is to provide a safe living environment. And in case of an accident, which will unfortunately be inevitable, the damage must be minimal.

People walking/using the streets

The main need for these people concerning drone delivery is to be able to walk the streets safely without the fear or risk of an accident. Other airspace users

Tight regulation of the airspace to keep the accidents to a minimum or preventive mechanisms to avoid them. Drones should only be allowed to fly at certain safe altitudes that do not interfere with air crafts and helicopters, moreover drones should not be allowed to fly next to locations like airports, since that can result in a dangerous situation that can lead to crashes with commercial airliners.

Personal tools