Matlabscript Botsingsdetectie
From Control Systems Technology Group
(Difference between revisions)
Line 8: | Line 8: | ||
% and displaying the results. | % and displaying the results. | ||
obj = setupSystemObjects(); | obj = setupSystemObjects(); | ||
- | + | <br> | |
tracks = initializeTracks(); % Create an empty array of tracks. | tracks = initializeTracks(); % Create an empty array of tracks. | ||
. | . |
Revision as of 16:25, 13 January 2016
Hieronder staat de Matlab-code voor de botsingsdetectie. Comments over gebruikte code staan in het script erbij vermeldt.
function Collision_detection() clc % Create System objects used for reading video, detecting moving objects, % and displaying the results. obj = setupSystemObjects();
tracks = initializeTracks(); % Create an empty array of tracks. . nextId = 1; % ID of the next track . % Detect moving objects, and track them across video frames. fr=0; disp('Starting...'); . f = step(obj.reader); obj.videoPlayer.step(f); release(obj.videoPlayer); . Lastpos = [0 0]; Currentpos = [0 0]; colvar = 1; SHOW = 1; %turn on/off message box . while fr < 41 && isOpen(obj.videoPlayer) fr; frame = readFrame(); [centroids, bboxes, mask] = detectObjects(frame, blob); predictNewLocationsOfTracks(); [assignments, ~ , unassignedDetections] = ... detectionToTrackAssignment(); updateAssignedTracks(); %position createNewTracks(); displayTrackingResults(); fr=fr+1; end . release(obj.videoPlayer); obj.videoPlayer.hide(); close all; . %% Create System Objects % Create System objects used for reading the video frames, detecting % colored objects, and displaying results. . function obj = setupSystemObjects() % Initialize Video % Create objects for reading a video from a file, drawing the tracked % objects in each frame, and playing the video. No live camera data % can be analyzed yet obj.reader = vision.VideoFileReader('botsing1.mp4'); . % Create a video player obj.videoPlayer = vision.VideoPlayer('Position', [200, 400, 700, 400]); . % Create System objects based on movement and blob analysis obj.detector = vision.ForegroundDetector('NumGaussians', 3, ... 'NumTrainingFrames', 5, 'MinimumBackgroundRatio', 0.8); . blob = vision.BlobAnalysis('BoundingBoxOutputPort', true, 'ExcludeBorderBlobs',true, ... 'MajorAxisLengthOutputPort',true,'EccentricityOutputPort', true, 'CentroidOutputPort', true, ... 'MinimumBlobArea', 2100, 'MaximumBlobArea',50000); end . %% Initialize Tracks % The structure contains the following fields: % % * |id| : the integer ID of the track % * |bbox| : the current bounding box of the object; used % for display % * |kalmanFilter| : a Kalman filter object used for motion-based % tracking % * |age| : the number of frames since the track was first % detected % * |totalVisibleCount| : the total number of frames in which the track % was detected (visible) % * |consecutiveInvisibleCount| : the number of consecutive frames for % which the track was not detected (invisible). % This results in deleting the track if the % threshold is reached . function tracks = initializeTracks() % create an empty array of tracks tracks = struct(... 'id', {}, ... 'bbox', {}, ... 'kalmanFilter', {}, ... 'age', {}, ... 'totalVisibleCount', {}, ... 'consecutiveInvisibleCount', {}); end . %% Read a Video Frame % Read the next video frame from the video file. function frame = readFrame() frame = obj.reader.step(); %frame = snapshot(cam); end . %% Detect Objects % The |detectObjects| function returns the centroids and the bounding boxes % of the detected objects. It also returns the binary mask, which has the % same size as the input frame. Pixels with a value of 1 correspond to the % foreground, and pixels with a value of 0 correspond to the background. . function [centroids, bboxes, mask] = detectObjects(frame, blob) . % Use color to identify turtles from each team. Only these colors will % be taken into account. A distinctive top color results in more % accurate tracking. Red = frame*255; Red = Red(:,:,1)>Red(:,:,2)*2 & Red(:,:,1)>Red(:,:,2)*2; . mask = obj.detector.step(frame); % Apply morphological operations to remove noise and fill in holes. mask = imopen(mask, strel('rectangle', [9,9])); mask = imclose(mask, strel('rectangle', [15, 15])); mask = imfill(mask, 'holes'); . % detect blobs, return centroids, bounding boxes, eccentricity and diameter [~,centroids,bboxes,diam,ecc] = step(blob,Red); . % maximize for most round object if ~isempty(centroids) [~,I] = max(ecc,[],1); bboxes = bboxes(I,:); centroids = centroids(I,:); diam = diam(I); end %check if max is indeed round (i.e. if anything useful detected) if ecc > 1 ecc = []; centroids = []; bboxes = []; diam = []; end . end %% Predict New Locations of Existing Tracks % Use the Kalman filter to predict the centroid of each track in the % current frame, and update its bounding box accordingly. . function predictNewLocationsOfTracks() for i = 1:length(tracks) bbox = tracks(i).bbox; . % Predict the current location of the track. predictedCentroid = predict(tracks(i).kalmanFilter); % Shift the bounding box so that its center is at % the predicted location. predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2; tracks(i).bbox = [predictedCentroid, bbox(3:4)]; end end . %% Assign Detections to Tracks % Assigning object detections in the current frame to existing tracks is % done by minimizing cost. The cost is defined as the negative % log-likelihood of a detection corresponding to a track. . function [assignments, unassignedTracks, unassignedDetections] = ... detectionToTrackAssignment() . nTracks = length(tracks); nDetections = size(centroids, 1); . % Compute the cost of assigning each detection to each track. cost = zeros(nTracks, nDetections); if nTracks>0 cost(1, :) = distance(tracks(1).kalmanFilter, centroids); end . % Solve the assignment problem. costOfNonAssignment = 20; [assignments, unassignedTracks, unassignedDetections] = ... assignDetectionsToTracks(cost, costOfNonAssignment); end . %% Update Assigned Tracks % The |updateAssignedTracks| function updates each assigned track with the % corresponding detection. It calls the |correct| method of % |vision.KalmanFilter| to correct the location estimate. Next, it stores % the new bounding box, and increases the age of the track and the total % visible count by 1. Finally, the function sets the invisible count to 0. . function updateAssignedTracks() numAssignedTracks = size(assignments, 1); for i = 1:numAssignedTracks trackIdx = assignments(i, 1); detectionIdx = assignments(i, 2); centroid = centroids(detectionIdx, :); bbox = bboxes(detectionIdx, :); . % Correct the estimate of the object's location % using the new detection. This will give the current position Currentpos = correct(tracks(trackIdx).kalmanFilter, centroid); % Replace predicted bounding box with detected % bounding box. tracks(trackIdx).bbox = bbox; % Update track's age. tracks(trackIdx).age = tracks(trackIdx).age + 1; . % Update visibility. tracks(trackIdx).totalVisibleCount = ... tracks(trackIdx).totalVisibleCount + 1; tracks(trackIdx).consecutiveInvisibleCount = 0; checkcollision(); saveposition(); end end . %% Create New Tracks % Create new tracks from unassigned detections. Assume that any unassigned % detection is a start of a new track. In practice, you can use other cues % to eliminate noisy detections, such as size, location, or appearance. . function createNewTracks() centroids = centroids(unassignedDetections, :); bboxes = bboxes(unassignedDetections, :); . for i = 1:size(centroids, 1) . centroid = centroids(i,:); bbox = bboxes(i, :); . % Create a Kalman filter object. kalmanFilter = configureKalmanFilter('ConstantVelocity', ... centroid, [200, 50], [100, 25], 200); . % Create a new track. newTrack = struct(... 'id', nextId, ... 'bbox', bbox, ... 'kalmanFilter', kalmanFilter, ... 'age', 1, ... 'totalVisibleCount', 4, ... 'consecutiveInvisibleCount', 0); . % Add it to the array of tracks. tracks(end + 1) = newTrack; . % Increment the next id. nextId = nextId + 1; end end . %% Display Tracking Results % The |displayTrackingResults| function draws a bounding box and label ID % for each track on the video frame and the foreground mask. It then % displays the frame and the mask in their respective video players. . function displayTrackingResults() % Convert the frame and the mask to uint8 RGB. frame = im2uint8(frame); mask = uint8(repmat(mask, [1, 1, 3])) .* 255; . minVisibleCount = 8; if ~isempty(tracks) . % Noisy detections tend to result in short-lived tracks. % Only display tracks that have been visible for more than % a minimum number of frames. reliableTrackInds = ... [tracks(:).totalVisibleCount] > minVisibleCount; reliableTracks = tracks(reliableTrackInds); . % Display the objects. If an object has not been detected % in this frame, display its predicted bounding box. if ~isempty(reliableTracks) % Get bounding boxes. bboxes = cat(1, reliableTracks.bbox); . % Get ids. ids = int32([reliableTracks(:).id]); . % Create labels for objects indicating the ones for % which we display the predicted rather than the actual % location. labels = cellstr(int2str(ids')); predictedTrackInds = ... [reliableTracks(:).consecutiveInvisibleCount] > 0; isPredicted = cell(size(labels)); isPredicted(predictedTrackInds) = {' predicted'}; labels = strcat(labels, isPredicted); . labels = 'Red Ball'; % Draw the objects on the frame. frame = insertObjectAnnotation(frame, 'rectangle', ... bboxes, labels); . % Draw the objects on the mask. mask = insertObjectAnnotation(mask, 'rectangle', ... bboxes, labels); end end . % Display the mask and the frame. obj.videoPlayer.step(frame); end . %% Store previous location % The |saveposition| function stores the location of the previous frame to % allow for the calculation of a direction vector created from consecutive % frames . function saveposition() if fr <2 Lastpos = [0 0]; elseif fr >= 2 Lastpos = Currentpos; end end . %% Check for a collision % The |checkcollision| function checks every frame if there is a sudden % change in the direction compared to its previous. If more elaborate % collision rules apply, one can look to find the acceleration . function checkcollision() if ~isempty(Lastpos) && fr >17 %% Bounding box drawn if (Currentpos(1) > Lastpos(1))&&(Currentpos(2) > Lastpos(2)) ... && colvar == 1 fprintf('BOTSING in frame %u \n', fr); if SHOW == 1 h =msgbox('Collision occured!'); end colvar = colvar + 1; end end end . end
A link to the matlab code can be found here: link title
Terug naar: Botsingsdetectie