Football Table Simulation Visualization Tool: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 2: Line 2:
<b>Author: Erik Stoltenborg</b>
<b>Author: Erik Stoltenborg</b>
==Gazebo==
==Gazebo==
<p>A simulator is developed to easily test new algorithms without depending on the actual robot. In has been developed using [http://gazebosim.org/ gazebo] (w/o the use of ROS), a so-called ''physics abstraction layer'', which employs [http://www.ode.org/ ODE] combined with [http://www.ogre3d.org/ OGRE] for rendering. The environment/robots are described in the [http://gazebosim.org/sdf/dev.html SDF] format, which in this case is combined with Collada (*.dae) renderings for more complex geometry. A previous attempt was created using [http://www.openrobots.org/wiki/morse MORSE], however this did not allow good tuning of the physics.</p>
<p>A simulator is developed to easily test new algorithms without depending on the actual robot. In has been developed using [http://gazebosim.org/ gazebo] (w/o the use of ROS), a so-called ''physics abstraction layer'', which employs [http://www.ode.org/ ODE] combined with [http://www.ogre3d.org/ OGRE] for rendering. Gazebo has been very well maintained since 2012, since it became the official simulator for the [http://www.theroboticschallenge.org/ DARPA Robotics Challenge].
The environment/robots are described in the [http://gazebosim.org/sdf/dev.html SDF] format, which is very simular to *.xml. It can be easily combined with CAD-files, in this case is combined with Collada (*.dae) renderings for more complex geometry. A previous attempt was created using [http://www.openrobots.org/wiki/morse MORSE], however this did not allow good tuning of the physics.</p>
 
==Inter-process Communication==
==Inter-process Communication==
<p>
<p>
This simulation communicates with Matlab Simulink using  Interprocess Communication (IPC) wrapper library for the POSIX libraries. This library uses mutexes and condition variables enabling a thread-safe, synchronized, causal communication between two processes e.g. Gazebo and Simulink. This allows us to use the Gazebo simulator as a plant in our simulink control loop. More on this library and how it is used, can be found [http://cstwiki.wtb.tue.nl/ here *EDIT*].
This simulation communicates with Matlab Simulink using  Interprocess Communication (IPC) wrapper library for the POSIX libraries. This library uses mutexes and condition variables enabling a thread-safe, synchronized, causal communication between two processes e.g. Gazebo and Simulink. This allows us to use the Gazebo simulator as a plant in our simulink control loop. More on this library and how it is used, can be found [http://cstwiki.wtb.tue.nl/ here *EDIT*].
</p>
</p>

Revision as of 10:46, 10 September 2013

Author: Erik Stoltenborg

Gazebo

A simulator is developed to easily test new algorithms without depending on the actual robot. In has been developed using gazebo (w/o the use of ROS), a so-called physics abstraction layer, which employs ODE combined with OGRE for rendering. Gazebo has been very well maintained since 2012, since it became the official simulator for the DARPA Robotics Challenge. The environment/robots are described in the SDF format, which is very simular to *.xml. It can be easily combined with CAD-files, in this case is combined with Collada (*.dae) renderings for more complex geometry. A previous attempt was created using MORSE, however this did not allow good tuning of the physics.

Inter-process Communication

This simulation communicates with Matlab Simulink using Interprocess Communication (IPC) wrapper library for the POSIX libraries. This library uses mutexes and condition variables enabling a thread-safe, synchronized, causal communication between two processes e.g. Gazebo and Simulink. This allows us to use the Gazebo simulator as a plant in our simulink control loop. More on this library and how it is used, can be found here *EDIT*.