Embedded Motion Control 2015 Group 3/Drive

From Control Systems Technology Group
Revision as of 10:52, 23 June 2015 by S114807 (talk | contribs)
Jump to navigation Jump to search

Drive

This page is part of the EMC03 CST-wiki.

Old drive method - to drive through corridors

Going straight in a corridor is done by checking the closest points at the left-hand and right-hand side of the corridor, since this will be where the wall is perpendicular to the robot. Based on that, it checks what the correct angle for driving should be (difference between left and right angle). Then, it calculates the deviation from the centerline of the corridor, and based on a desired forward speed, it calculates a movement vector. Finally, it translates this vector to the local robot driving coordinates. It should be noted that the Drive class is not responsible for deciding whether it's driving in a corridor, so this particular algorithm is not robust for corners, intersections etc.

Taking a corner is done by looking at the two corner points of the side exit. Then, it tries to orient the robot to bisect the angle between those corner points, while maintaining forward speed. This way, a corner will be taken. The main vulnerability here is taking the corner too narrow, so a distance from the wall will be kept.

Simple method

The first approach is the most simple one, that is why it is called the simple method. This also means that is not the most fancy one. However, it is still important to have this working because we can always use this method when the other methods fail. In addition, we have learned a lot from it and used is as base for the other methods.

In brief, the simple method contains 3 steps:

  1. Drive to corridor without collision.
  2. Detect opening (left of right) and stop in front of it.
  3. Turn 90 degrees and start driving again.

This method is a robust way to pass the corridor challenge. Although, it would not be the fastest way.

Path planning for turning

The path planning is the second method that we worked on. Briefly, it exist of two independent sub-methods.

  1. Collision avoidance: This is a function that is used to drive straight through corridors without touching the walls. The function measures the nearest wall and identifies whether it is on its left or right side. There is set a margin in order to avoid a collision. This margin determines when PICO has to adjust its direction. When for instance, a wall on the left is closer than the margin, PICO has to move to the right. This method works well for straight corridors. However, it will not work for driving around corners.
  2. Path planning for driving around corners: Path planning can be used when PICO approaches an intersection. Assume that PICO has to go left on a T-juntion; then only collision avoidance will not be sufficient anymore. So, for instance 0.2 meter before the corner the ideal path to drive around the corner is calculated. This means that Vx, Vy, Va and the time (for turning) have to be determined on that particular moment. Then basically,
  • Driving straight stops;
  • Turning with the determined Vx, Vy and Va for the associated time to drive around the corner;
  • Driving straight again.

In practice, this method turned out to be very hard. Because it is difficult to determine the right values for the variables.

Not the right figure yet