From Control Systems Technology Group

Jump to: navigation, search

A cost-optimization model in multi-agent system routing for drone delivery

Kim, M., Matson, E.T. “A cost-optimization model in multi-agent system routing for drone delivery” 5115th International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAMS 2017; Porto; Portugal; 21 June 2017 through 23 June 2017; Volume 722, 2017, Pages 40-51. https://www.scopus.com/record/display.uri?eid=2-s2.0-85021246581&origin=resultslist&sort=plf-f&src=s&st1=Drones++AND+deliver&nlo=&nlr=&nls=&sid=dfd90f7a89df9f7bf81cbae63504aeef&sot=b&sdt=b&sl=34&s=TITLE-ABS-KEY%28Drones++AND+deliver%29&relpos=20&citeCnt=0&searchTerm=


The paper focusses on the cost for the drone delivery system and does that concentrating at the total weighted distance traveled and the distance limits. Time is an important factor in optimizing the costs, but the demand for free shipping has bigger influence on the usefulness of drone systems. Thus the cost of a traveling drone is more important than time. To reduce these costs in the past A* search and heuristics where used to minimize the travel distance, and thus costs. The algorithm uses one place to pick up supply and get maintenance. The battery life is therefore important for the drones. The system looks to the possibility to place drones on busses(public transport)so they keep moving to their target while charging their battery. The algorithm looks for a way to merge bus routes and delivery routes, saving air space, time and costs. The experiment show promising results in uses bus routes and UAV’s together. It can reduce the total mileage up to 50%. (See the table and graphs)

Personal tools