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Summary Control Engineering lectures

The goal of this summary is to shortly discuss a number of important topics within the control
theory. It is only an introduction, and hence far from complete.

Prior knowledge: The course System Analysis (4A320) and sheets of this course (Control En-
gineering, 4A550). Furthermore, the chapters 1-3 of the book of Franklin, Powell and Emami-
Naeni (FPE) is recommended. You’ll also need to know how to use complex numbers!

Note: An easy way to derive a transfer function (when all initial conditions are 0): simply replace
all d

dt terms by the Laplace variable s.

A large part of the summary below is also described in FPE chapters 4 and 6. Read these chapters
for more information.

Basic properties of feedback

• There are various reasons to apply feedback control:
i) stabilization
ii) robustness
iii) performance
iv) change the dynamic behavior

Regarding ii) and iii) there is an important relation which indicates the advantage of feedback:
the sensitivity function1 S = 1

1+CH , for a standard block diagram as in figure 1 with controller
C and process H. Hence |S| < 1 is good, and |S| > 1 is bad. Other important transfers are
the complementary sensitivity T = CH

1+CH , the process sensitivity2 PS = H
1+CH and the control

sensitivity CS = C
1+CH .
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Figure 1: Standard block diagram

• Derivation of transfer functions from block diagrams. Suppose we are looking for the transfer
from input signal w to output signal e: G = e

w . First take all other inputs zero, here r = 0.
Then, in this example, start with the signal e = −y = −Hu. Then, write u = w + Ce and
eliminate the internal variable u, such that e = −Hw − HCe. Bringing e to one side, then
finally results in G = e

w = −H
1+CH .

• Basic controllers are Proportional (u = Pe), Differentiators (u = de
dt ) and Integrators

(u =
∫

e dt). Hence, a P-controller is C(s) = P , a PD-controller is C(s) = P + Ds, a PI-
controller is C(s) = P + 1

Ts or C(s) = K(1+Ts)
Ts and a PID-controller is C(s) = P +Ds+ 1

Ts . For
mechanical positioning systems (measurement of position and steering by force) P is a (virtual)
spring and D a damper.

• Determine the constant steady-state value: use the Final Value Theorem (see FPE section 3.1.6).
For constant input signals (so after a step on the reference r or disturbance w) this comes down
to the evaluation of the relevant transfer function for frequency 0 (i.e. substitute s = jω = 0).

1Note that C, H and S are functions of s. For convenience, the argument (s) is however omitted here.
2When considering the transfer to the error: −H

1+CH
.
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Figure 2: Time functions associated with points in the s-plane

• The role of feedback for the dynamics: the poles of the (open loop) system H(s) can be found
be setting the denominator of H(s) equal to zero. For the closed loop system we look at the
denominator of one of the closed loop transfer functions; for standard block schemes with C(s)
and H(s) this denominator is always equal to (1 + CH). Hence the solutions to 1 + CH = 0
return the poles in the s-plane. Re(s) < 0 gives stable behavior. The farther to the left, the
faster. See figure 2. Furthermore, knowledge of the standard 2nd order behavior is important
(see FPE section 3.3 and figure 6.2).

The frequency response design method

• A frequency response H(jω) of a transfer function H(s) is a complex number for each frequency
ω, and its magnitude and phase is equal to the magnitude and phase of the sinusoidal output
signal in relation to a sinusoidal input signal, that is, in the steady-state situation (after the
transient behavior has vanished). A plot of this magnitude and phase as a function of frequency
ω is called a Bode diagram; a plot of the imaginary part versus the real part of the frequency
response is called a Nyquist diagram (note: with the Nyquist diagram of a controlled system
we always mean the Nyquist plot of the open loop frequency response C(jω)H(jω)!).

• Methods to draw Bode diagrams were already treated in the course System Analysis (4A320),
by partitioning the frequency response in 1st and 2nd order pieces. A fast analysis can be done
as follows: low-frequent LF (s = jω is very small), high-frequent HF (s = jω is very large)
and the mid-frequency region. For the latter it is useful to determine the poles and zeros (for
complex poles and zeros: use the undamped one), for these determine the breakpoints of the
asymptotes.

• For Bode plots we use the dB scale: xdB=20·10logA, so if x = 20dB then A = 10, if x = 6dB
then A = 2, etc. See also System Analysis.

• Bode gain-phase relation (FPE section 6.5): phase = asymptote slope × 90◦. This is only valid
for stable minimum-phase systems, so when all poles and zeros are in the left half plane (LHP).

• Stability: besides physically computing the closed loop poles, it is also possible to examine
stability graphically. For open loop stable systems the Nyquist theorem holds, in the form
that the point (-1,0) should lie on the left of the Nyquist curve CH, if we follow this curve
in the direction of increasing frequency. The reason for this is as follows: we search for those
values of s for which 1 + CH = 0, since this returns the closed loop poles. We want this poles
to lie in the LHP. Suppose we found a pole s = σi + jωi with Re(s) = σi < 0 this way. It
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then holds that (1 + C(σi + jωi)H(σi + jωi)) = 0, so C(σi + jωi)H(σi + jωi) = −1. The
line with complex values which crosses the pole is s = σi + jω. Hence, the Nyquist diagram
C(σi + jω)H(σi + jω) is an image going through the point (-1,0). If we choose a line a little
more to the right, e.g. s = 0.5σi + jω, then the image C(0.5σi + jω)H(0.5σi + jω) will lie on
the right of the image C(σi + jω)H(σi + jω). Finally, if we choose s = jω, it holds that the
Nyquist diagram C(jω)H(jω) has the point (-1,0) on its left side.

• Robustness margins (1): the phase margin is the phase distance of the open loop CH to -180◦

for |CH| = 1. The gain margin is the amount with which the magnitude can increase until
|CH| = 1, for those frequencies at which the phase of CH is equal to -180◦.

• Robustness margins (2): the distance of each point of the Nyquist curve C(jω)H(jω) to the
critical point (-1,0) is equal to 1

|S(jω)| , with S = 1
1+CH . Generally, a good robustness is achieved

when |S(jω)| < 2 (=6dB) for all frequencies. In that case the Nyquist curve C(jω)H(jω) always
stays outside a circle with radius 0.5 around (-1,0).

• Filter definitions (basic building blocks for controllers):

Name C(s) Usage Zero
[Hz]

Pole
[Hz]

Comments

P-controller P Gain - - -

PI-controller P · s + 2πf

s
I-action, LF gain f 0 -

PD-controller P + Ds Phase lead P
D

- -

Lead or Lag P ·

1
2πf1

s + 1

1
2πf2

s + 1

Phase lead
or
phase lag

f1 f2

Lead: f1 < f2

or
Lag: f1 > f2

1st order
lowpass

1
1

2πf
s + 1

Cut-off
high frequencies - f -

2nd order
lowpass

1
1

(2πf)2
s2 +

2β

2πf
s + 1

Cut-off
high frequencies - f, f

damping:
β < 1 (e.g. 0.7)

Notch

1
(2πf1)2

s2 +
2β1

2πf1
s + 1

1
(2πf2)2

s2 +
2β2

2πf2
s + 1

Suppress and/or
amplify specific
frequencies

f1, f1 f2, f2
If f1 = f2,
depth=β1

β2

• The above filters can all be used in series with each other. Building a controller C(s) based on
the above elements is called loopshaping.

• Loopshaping: analyze and interpret the Bode diagram of the to be controlled system H(s).
Based on the requirements and design specifications, there must be an idea about the required
cross-over frequency fco (i.e. 0dB point of the open loop CH; often called bandwidth). Examine
whether a phase lead is necessary. If so, start with a PD or a lead filter to achieve the right
phase of CH (i.e. a good phase margin). Rule of thumb 1: put the zero of a PD at the desired
fco, which gives 45◦ additional phase lead. Rule of thumb 2: for a lead filter place the zero at
f1 = fco/3 and the pole at f2 = fco · 3. Then determine the gain of the controller C(s) such
that |CH| = 1 at the cross-over frequency fco. If needed or desired, add an I-action, with a rule
of thumb for the zero f = fco/5 (otherwise it will cost too many phase, since an integrator has
90◦ phase lag).
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• Bode Sensitivity Integral: W.B.E. = Waterbed Effect = Wet van Behoud van Ellende (lit. “Law
of the Conservation of Misery”). For stable minimum phase systems with at least 2 more poles
than zeros (i.e. relative degree 2 or higher) it holds that

∫
| log(S)| dω = 0. Remember, the

region |S| < 1 is good, the region |S| > 1 is bad. However, both regions are equal to each other.
There is an equal amount of area beneath and above the line |S| = 1. Hence, make |S| small for
those frequencies where there is at lot of disturbance or setpoint content, and let |S| be bigger
in those frequency regions where there is little disturbance or setpoint content.

• Control design procedure: make a model of the to be controlled system, determine the charac-
teristics of the given relevant input signals (like setpoint r, disturbances w; which frequencies
and magnitudes do they contain?), and determine the requirements of the output signals (like
tracking error e or system output y). Then determine the relevant transfer functions (between
the relevant input and output signals, like sensitivity S or process sensitivity PS). Based on
the specifications, estimate the desired suppression and/or cross-over frequency (bandwidth).
Design a stabilizing controller with loopshaping, using Bode diagrams and Nyquist plots. Re-
member to check the relevant frequency responses. If needed, increase the performance and
evaluate whether or not additional filters should be added to C(s) to meet the specifications.
Using Simulink you can always check time domain requirements by making and analyzing the
time domain responses.

• Feedforward: when there is a suitable and known setpoint, you can additionally choose to apply
feedforward control. As a feedforward controller you could use the inverse of the process model
H(s)−1 (or an approximation of this). Evaluate the time response with Simulink!

If you have discovered any mistakes or deficiencies in this document, or if you have any remarks
regarding this document, please email me. Thanks!

Gert Witvoet, g.witvoet@tue.nl, WH -1.126, tel. 4227
Maarten Steinbuch, m.steinbuch@tue.nl, WH 0.141, tel. 5444

Modified: August 23, 2007
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