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Preface

This reader was written for the course 2IX20, software specification at Technische Universiteit
Eindhoven (Eindhoven University of Technology). The content of the course is based on earlier
incarnations, with contributions over the years by Mohammad Mousavi, Alexander Serebrenik,
Julien Schmaltz and Anton Wijs.

This reader, where the informal specification using UML is based on Seidl et al. (2015) was
first used for the course in academic year 2019-2020. The first nine chapters have been revised
completely. Furthermore, the formalization of the semantics in Chapter 13 has been updated such
that it reflects the semantics of UML state machine diagrams as discussed in Seidl et al. (2015);
the previous formalization of the semantics resembled the semantics of Harel’s state charts instead.
Chapter 11 has been updated to include more accurate examples, and more formal description of
the semantics, as well as many exercises. This chapter pretty closely follows the description in
Baier and Katoen (2008). Chapter 14 was already added to the reader for the 2018-2019 run of
the course; it is closely follows the paper Tretmans (2008). The content of this chapter follows
the material of part III of the course System Verification & Testing of the Open Universiteit, for
which Jeroen Keiren originally developed this chapter. The chapter is used with permission from
the Open University of the Netherlands.

For academic year 2020-2021, the order of chapters in the reader was changed to reflect the
order in which the material is presented in the course. Also, feedback and remarks by students in
the previous year were processed to improve the quality and readability of the reader.

In 2021-2022, Chapter 10, introducing Promela and the SPIN model checker, along with some
exercises, was added. This chapter was tested in 2020-2021. Also, Chapter 12 was extended with
additional examples and exercises.

In 2022-2023, the order of the chapters on the Spin model checker and Promela (Chapter 10),
Kripke structures (Chapter 9), LTL (Chapter 11), Labelled transition systems (Chapter 12) and
the semantics of UML state machine diagrams (Chapter 13) was revised to improve the integration
of the different chapters with each other. Also, the chapter on Spin and Promela was updated to
use the command line version of Spin.

In this reader we have selected a large number of exercises. Some of the exercises for Chap-
ters 4–8 have been adapted from multiple-choice exercises in the online learning environment that
accompanies Seidl et al. (2015). Other exercises have been constructed specifically for this course,
or have been inspired by other sources. Sample solutions to the exercises are provided in the
appendix. Since the course handles requirements and modelling, often there is no unique solution,
and the nuance of the solution is naturally missing from the solutions in the appendix. If you
disagree with solutions, or think you have better, alternative solutions, please let us know! We
would be happy to improve the reader based on your feedback.

Corrections during 2022-2023:

• Clarified the description of paths and infinite paths in the Kripke structure chapter.
• Fixed the solution to Exercise 11.4.
• Updated the LTL chapter to explicitly refer to infinite paths.
• Fix an example which used a channel with incorrect signature in Chapter 10.

7



8 CONTENTS

Acknowledgements I would like to thank Rick Erkens, Lars van den Haak, Samar Jameel and
Matthijs Bosch, Yousif Mir and Ruben Verhaegh for detailed comments on the earlier versions of
the reader.



Chapter 1

Introduction

This reader accompanies the TU/e course 2IX20 Software Specification. The reader is based on
earlier incarnations written by Julien Schmaltz and Anton Wijs. In this first chapter we briefly
sketch the context of the course, and outline the learning objectives.

1.1 Context and motivation

The context of this course is the broad field of Software Engineering. Software engineering broadly
covers all aspects of building complex but reliable computer systems.

When developing complex systems, there are a number of things that should be kept in mind.
First of all, computer systems are typically developed to address a customer’s need. In order to
do so, it is important to find out exactly what the customer wants. Typically, this is done using
requirements elicitation, which results in a set of requirements that establishes the needs of the
stakeholders that have to be resolved by the software.

Once the customer’s needs are clear, it needs to be decided how the system is going to be
implemented. To aid in this process, we can design the software system that is developed. The
design of the system is, essentially, a specification of the different aspects of the system, for
instance how it is structured, or how a particular component should behave. This design allows
us to reason about the correctness: does the design allow us to implement a system that covers
the requirements?

Finally, the system that was designed is implemented in code. Once a component of the system
has been implemented we can, on a local level, check whether it adheres to its specification for
instance by using unit testing. Furthermore, we can determine whether the system as a whole
implements the functionality as specified by the requirements.

The motivation of the course is that software quality significantly depends on the quality of
the overall design, including structure and organization of the software. Bugs in software systems
are frequently due to bad design choices made at the start of the development project.

Example 1.1.1. Consider the Miller&Valasek case about Jeep1. These two “hackers” managed to
take control over a car. They exploited an error made in the design of the system. In short, the
mobile phone network access point of the car was not protected. They could use this to upload
malware to the car. An important design flaw is that once they were inside, they had root access
by default and commands like “execute this software” were available at the command line. They
could then upload new firmware to the car and take control of every single digital device. This is
an example where decisions made early on in the project (such as underestimating cellular access
protection, how to structure the overall system to protect firmware, what commands to allow or
not) may introduce system flaws.

1Remote exploitation of an unaltered passenger vehicle, C.Miller and C. Valasek, DEFCON 23. See
https://www.youtube.com/watch?v=OobLb1McxnI.
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This course is focused on theories and techniques for writing specifications of computer systems,
assessing the quality of the specification, and testing a system against its specification. We will
cover the following aspects:

Informal specification. We will look at requirements, formulated in natural language, and dis-
cuss criteria that good requirements should satisfy. Furthermore, we discuss types of dia-
grams drawn from the UML standard that allow us to describe how the system is used, how
it is structured, and how (a component of) the system behaves. These diagram types are
typically used in a relatively informal way, and allow us to provide a high-level specification
of (aspects of) the system, and to discuss and analyse them.

Formal specification. We use linear temporal logic to give a precise logical characterization of
requirements. Automata are used precisely describe the behavior of a system. We also use
tools to automatically verify that a system described using automata is guaranteed to satisfy
requirements formulated in temporal logic.

Model-based testing. The formal specification of the behavior of the system and its require-
ments allows us to check that the specification is valid w.r.t. the requirements. However,
the implementation is typically written separately, and the validation that was done on the
specification does not carry over to the implementation. We therefore study model-based
testing techniques that take our formal specification of the behavior, and determine whether
the implementation conforms to the formal specification.

Developing specifications early on in a project is useful. Specifications are useful, because
they force developers to carefully think about the systems under development, and they provide
a way to assess that the systems ultimately meet their requirements. But in addition to this, a
specification is useful as a contract between a customer and a software provider. In practice the
specification is a formal contract that describes the product a customer is paying for, in particular
what it should and should not do.

1.2 Learning objectives

The context and motivation behind the course inspire the following main learning objectives. At
the end of this course, the student:

1. can describe existing software systems and software systems to be developed by means of
informal and formal specification techniques;

2. can use tools to create specifications and to verify that specifications meet requirements
expressed as formal properties;

3. can apply model-based testing techniques to relate software systems to their specifications.

1.3 Required knowledge & related courses

In this course it is assumed that students have:

• Basic knowledge of object-oriented programming. This is for instance treated in the courses
Programming (2IP90) and Programming methods (2IPC0). The informal descriptions given
in this course, based on UML, follow an object-oriented approach as well, and often have a
direct translation into an object-oriented language like Java. In 2IPC0, class diagrams and
sequence diagrams were already introduced in order to explain design patterns.

• Basic knowledge of first-order logic (predicate logic). This is treated in the course Logic and
Set theory (2IT60). Essentially, first-order logic is one of the fundamental languages that
can be used to precisely specify (parts of) systems. In this course, we introduce temporal
logic. This is an instance of first-order logic that conveniently facilitates reasoning about
systems. We can automatically verify whether a system satisfies properties expressed in
temporal logic.
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There are many other courses that provide useful backgrounds for topics treated in this course.
We discuss some examples. The course automata, language theory & complexity (2IT90) intro-
duces automata to represent languages (e.g. (non)deterministic finite automata to capture regular
languages). The labelled transition systems and Kripke structures discussed in this course are also
state based systems, but here they represent behavior of a system.

Data modelling and databases (2ID50) introduced ER-diagrams to give and abstract represen-
tation of the data model. They are closely related to class diagrams, that represent the static
structure and behavior of the proposed system.

This course teaches techniques that are either used in, or extended upon in courses later in
the programme. The DBL app development requires you to describe your design using (some of)
the UML models introduced in this course. The Software engineering project (2IPE0) relies on
your ability to elicit requirements, formulate good requirements, and create good software designs.
Modelling skills are further explored in Process modeling and simulation (2IIH0). Process theory
further studies system behavior, and ways to reason about it.

1.4 Practical organization

Current information about the course organization can be found on CANVAS. This also lists the
lectures, instructions and assignments that belong to this course.



12 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

Before we are ready to dive into requirements and specifications, we should understand how the
different formalisms that we introduce in this course are used. In this chapter, we therefore first
look at the general topic of software quality, and the software development process.

2.1 Software quality

The content of the course is centered around the thesis that high-quality specification is a prereq-
uisite for high-quality software.

There are many models that are used to characterize software quality. Early quality models
were described by McCall et al. (1977) and Boehm et al. (1973). They were followed by models
described in international standards such as ISO/IEC 9126 (ISO, 2001), which was later succeeded
by ISO/IEC 25010:2011 (ISO, 2011). The interested reader is referred to the survey of the key
software quality models by Al-Qutaish (2010).

These software quality models all describe a hierarchy that, on the top-level, contains a number
of quality attributes, that may be subdivided further. On the lower levels, metrics are assigned
to the quality attributes that can be used to assess the extent to which the software has a certain
quality.

The ISO 25010 standard (ISO, 2011), for example, characterizes software quality using the
following eight quality attributes:

Functional suitability The functionality delivered by the software should satisfy the user’s
needs. This encompasses, among others, functional completeness and functional correct-
ness.

Performance efficiency The performance of the system relative to the amount of resources
used. Covers, e.g., resource utilization.

Compatibility The system should be able to exchange information with other systems of compo-
nents if it operates in a larger context. It should furthermore be able to perform its functions
while sharing the same hard-/software environment with other systems/components.

Usability Users of the system should be able to effectively and efficiently reach specified goals.
This includes, e.g., how easy it is to learn the system, and protecting the user from errors.

Reliability The degree to which a system, product or component performs its functions under
specified conditions for a specified period of time. This, for example, includes availability
and fault tolerance.

Security The system should protect information and data. This includes e.g., confidentiality and
integrity.

Maintainability The degree in which the system can be changed effectively and efficiently; for
this aspects such as reusability, modifiability and testability are considered.

Portability Covers how hard it is to port the system from one environment (e.g., hardware
platform) to another.

13
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In addition to these general standards, there are domain specific standards for software quality.
For example, DO-178C in the US and ED-12C in Europe are software standards for the avionics
industry. All software that is included in aircraft needs to be certified according to these standards.
There are similar standards for the automotive sector (ISO 26262) and other standards dedicated
to security (Common Criteria). Most of these standards require the following objectives to be
met:

1. Test coverage of the software structure, e.g. condition/decision coverage;
2. Absence of dead code (code that is never executed);
3. Traceability from requirements down to code.

In short, they require developers to show that they have a high-level specification of their software
and that this specification is correctly implemented. Assessment can be done through various
means:

1. reviews and other manual inspections;
2. software testing;
3. formal methods.

In this course, we will consider these three aspects: (informal) inspections (of specifications),
testing, and formal methods.

2.2 Software development processes

Software development projects are large and complex. To keep a project in check, it is crucial
to have a well-defined process. In particular, we would like to keep track of time, meaning both
the amount of effort spent (man-months) as well as planning; information which is mostly the
documentation of the project; organization, how are people and teams organized; quality of the
process and the product that is delivered; and money, i.e., what are the costs of the project (since
time is money, typically these are mainly personnel costs).

In this course, we will largely ignore the reasons for using a particular software development
process. However, we will see that the specification techniques that we introduce each have their
own place in software development. To put these specification techniques in the context of the
software development process, we first introduce the main software development process models.

The overview paper by Ruparelia (2010) discusses the most important software development
process models. The paper is available via Canvas, and you need to be in the TU/e network in
order to download its PDF.

At this point, you should read Ruparelia (2010) to familiarize yourself with the most important
models.

2.2.1 Software development life cycle

A software development life cycle (SDLC) models the process that is used to produce software.
There are several popular software development life cycle models, including e.g., the waterfall
model, the V-model and the agile model.

Different life cycle models characterize different phases, e.g., some models are more detailed
than others. Also, different sources use different names for the same stages. At their core, however,
all software development life cycle models cover the following four stages (our description is inspired
by Mauw et al. (2001)):

Requirements engineering In this phase, what the system should do and how it interacts with
its environment are clarified. Note that requirements do not only refer to the functional
requirements, that describe what the system should do, but also to non-functional require-
ments such as security.
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Specification In this phase, the user requirements are analysed and refined to obtain the devel-
oper’s view of the system (sometimes referred to as system requirements). The result of this
state generally is a specification of the system. This specification typically combines a natu-
ral language description with a description (of parts of the system) in a formal specification
language.

Design In this phase, the specification is refined. Decisions are taken, e.g., on how to partition
the system into subsystems. Also, the interaction of subsystems and interfaces with clearly
specified behavior are defined. The design is, in essence, a blueprint of the system to be
implemented.

Implementation The design is realized (implemented). This means the design is turned into
code. If hardware plays an essential part in the design, this is also part of the implementation.

We can say that the traditional SDLC models such as waterfall and the V-model are document-
driven: they go through each of the phases in the development process. At the end of each
phase a new pile of paper has been produced, and the process moves on to the next phase.
Furthermore, these traditional models often do not have a lot of customer involvement in the
software development process between requirements elicitation and acceptance of the product.

Today, a lot of software is developed using modern SDLC models such as agile. Agile1 is a
model of iterative development, in which individuals and interactions are more important than
processes and tools. This manifests itself in short iterations in which development focuses on
developing a limited set of features described using user stories. Essentially, requirements and
the software evolve together in the iterations. These methodologies focus much less on a priori
definition of requirements as well as documentation. Since it is hard to describe good requirements
up front, this can be an advantage. At the same time, since requirements are not available, it can
also be a disadvantage since it is difficult to estimate the cost of development.

2.2.2 The V-model for software development

The software specification techniques introduced in this course are mostly independent of the
software engineering process that is used. However, to illustrate the place of each of the techniques,
we use the V-model. We therefore fix the specific version of the V-model illustrated in Figure 2.1.
The dotted box in the picture emphasizes the parts of the V-model considered in this course.

On the left, from top to bottom, the process starts with an analysis of the requirements, from
which a specification is created that is refined into a design which is then implemented in some
programming language. Our picture is missing other steps like integration in an entire system.
Indeed, code is compiled into machine code and run by an operating system on some run-time
environment. Going back from bottom to top, testing efforts go from unit tests, system tests,
integration tests, to, ultimately, acceptance tests. Tests should here be understood with a general
meaning of “Quality Assurance” or QA for short. Quality assurance involves much more than
testing alone.

We will talk about validation when assessing the quality of one level, for example, unit testing
specific components from the implementation. We will talk about verification when assessing
quality between two different levels, for instance verifying that a design meets its specification.

1https://agilemanifesto.org
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Chapter 3

Requirements

A requirement is a textual description of system behavior. A requirement describes in natural
language, usually English, what a system is expected to do. This is a basic technique frequently
used in practice. The content of this chapter is based on the ISO/IEC/IEEE standard 29148:2018
ISO (2018). You should be able to access the standard from the TU/e library, and a link to it is
available from the Canvas page of this course.

A key section of the standard is “5.2 Requirements fundamentals”. We do not assume you read
the entire standard, but we do expect that you read the specific parts of the standard indicated
in this chapter.

Note that requirements can be used all along the development life cycle. In this chapter, we
consider the initial phase of a software development project. We consider requirements to form
the first model of the system to be developed.

After reading this chapter, we expect:

• you can explain the place of requirements engineering in the software engineering process;
• you know the characteristics of good requirements;
• you can explain the semi-formal syntax used to write requirements;
• you know the characteristics of a good set of requirements;
• you can write a requirements document that satisfies the characteristics of a good set of
requirements, and in which each of the individual requirements satisfies the characteristics
of good requirements.

3.1 Definition and goal

A requirement is a statement which expresses a need and its associated constraints and conditions.
It is a piece of text (written in natural language) describing a system, and does not require any
deep technical knowledge. It is therefore understandable by most stakeholders involved in the
project. Stakeholders generally are software providers, users, customers and suppliers.

The main objective for a set of requirements is as follows.
Requirements objective: to enable an agreed understanding between stakeholders.

Requirements are the initial step in specifying what is expected from the software system. By
specifying them, the stakeholders reach an “agreed understanding” of the objectives of the system.

3.2 Requirements engineering

One of the challenging aspects of every software engineering project is to define the requirements.
How do we reach an agreement on stakeholder objectives as described in the previous section?
Requirements engineering is a challenge, and success depends on the degree to which we manage

17
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to properly describe the system that is desired by the customer, and communicate this description
to the stakeholder.

The process of getting from the user needs to a requirements specification is called requirements
engineering. This process consists of four steps:

1. Requirements elicitation
2. Requirements specification
3. Requirements verification and validation
4. Requirements management

3.2.1 Requirements elicitation

Requirements elicitation, sometimes also referred to as requirements gathering is the processes of
getting the requirements of a system from the customers, users, and possibly other stakeholders.
The key focus of this step is understanding the problem. The process is typically more involved
than just asking the customer what the system should do. Therefore, in practice several techniques
are used for requirements elicitation. Some common techniques are:

• Interviewing stakeholders. Representatives from each stakeholder group are selected for
interviews to understand their expectations of the system and the tasks it should support.
Interviews can either be open ended to understand the problem, or it can be structured. In
a structured interview, questions are prepared to guide the interview. These can include,
for example, the stakeholder’s vision for the future, as well as alternative ideas. It is also
important to ask for other sources of information. It may help to ask the interviewee to
draw diagrams for easier communication.

• Brainstorming is a group technique intended to generate ideas. In brainstorming sessions,
an experienced moderator and attendees are arranged around a table. During such a session,
trigger questions are asked, and all participants write down their ideas related to the question.
The main goal is to generate many new ideas. An example of a technique based on intensive
brainstorming activities is Joint Application Development (JAD).

• Observing. The requirements engineer reads documents and discusses requirements with
the user. Typically they shadow important potential users as they do their work, and ask
the user to explain everything he or she is doing. It is important to record a video of a
concrete working session for analysis.

• Task analysis is the process of analyzing the way people perform their jobs: the things
they do, the things they act on and the things they need to know. Tasks are performed in
order to achieve a goal. It is important to realize that the task analysis concentrates on the
current situation, and is used as a starting point for a new system. Users will often refer
to new elements of a system and its functionality. Scenario-based analysis can be used to
exploit the new possibilities.

• Scenario-based analysis provides a more user-oriented view on the design and develop-
ment of an interactive system. A scenario projects a concrete description of an activity that
the user engages in when performing a specific task. It is important that the description is
sufficiently detailed so that the design implications can be inferred and reasoned about. It
is broader than task analysis.

• Prototyping. Here prototypes of the system are provided to stakeholders. This allows
to effectively investigate possible solutions and get relevant information and feedback. The
simplest kind of prototype is on paper (or digital sketches); in this form it is merely a set of
pictures of the system shown to the user in sequence to explain what would happen. A more
commonly used prototype is a mock-up of the system’s UI, written in a rapid prototyping
language. It does not normally perform any computations, access databases or interact with
other systems. It may also be limited to just a particular aspect of a system.

• A use case analysis is done to determine the classes of users (actors) that will use the the
system, and determine the tasks that each actor will need to do with the system. A use case
is a typical sequence of actions that a user performs in order to complete a given task.
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Note that the activities described above can be applied in different stages of the development
process. For instance, interviewing and brainstorming are more suitable to early stages of the
process, whereas prototyping and use cases analysis already require a good understanding of the
user requirements, and are typically used at later stages where the requirements are refined. In
this chapter we focus on the specification of user requirements in natural language. Use cases will
be discussed in Chapter 4.

3.2.2 Requirements specification

Once the requirements are understood, the problem can be described. This is referred to as
requirements specification. At this stage, all requirements (both functional and non-functional)
are specified using software requirement models. Depending on the application domain, such
models can be, for instance, ER-diagrams or (very high-level) class diagrams.

3.2.3 Requirements verification and validation

In the previous chapter we have already explained verification and validation in the software
engineering process in general, and the V-model in particular. Requirements validation focuses
on ensuring that the software correctly implements a specific function. Requirements verification
ensures that the requirements specification itself satisfies its quality criteria. In particular, it
should be ensured that requirements are consistent, complete and practically feasible.

3.2.4 Requirements management

In requirements engineering it is important to carefully keep track of the requirements, and an-
alyze, document, track and prioritize them. Requirements are hardly ever stable, and a good
requirements management process allows for changes in the requirements during the process. For
this it is, among others, important to trace dependencies between requirements, and to keep track
of the stakeholder objectives related to requirements.

3.3 Requirements Syntax

First, read section 5.2 of ISO (2018).

A requirement is written in natural language. Of course, natural language is inherently imprecise.
Therefore, when defining requirements, we need to be very careful to, e.g., ensure that they are
not ambiguous. One approach that helps to avoid common issues in requirements is to use a
structured language with clearly defined syntax and vocabulary. Such requirements are said to be
semi-formal. When it comes to writing requirements in natural language, we will only consider
semi-formal requirements in this course. In Chapter 11 we will see how requirements can be
formalized using temporal logic.

The ISO 29148 standard describes a clear syntax for writing requirements:

[Condition][Subject][Action][Object][Constraint of Action]

Requirements must at least have a Subject (what is the subject of the requirement) and an Action
(what shall be done by the subject). The other parts are optional. The individual parts of the
syntax have the following intention:

[Condition] condition under which the requirement is applicable. A condition generally starts
with the word “When ...”. For instance, “When signal X is received” or “When the system
is in mode Y”.

[Subject] describes the actor, for instance “the application” or “the system”.
[Action] describes the action or verb of the requirement. For instance “shall return to”, “shall

send”.



20 CHAPTER 3. REQUIREMENTS

[Object] the object of the action. This can for instance be a signal, a message or a particular
state.

[Constraint of Action] a constraint restricts the action. For instance, giving a time limit can
restrict the action. A typical word for such a constraint is “within”.

We next consider a number of examples (taken from the standard).

Example 3.3.1. When signal x is received [Condition], the system [Subject] shall set [Action]
the signal x received bit [Object] within 2 seconds [Constraint of Action].

This example illustrates the difference between [Condition] and [Constraint of Action]. A
condition is a restriction on the subject or its environment. In the example, the condition that a
particular signal is received. A constraint is a restriction on the action. In the example, that a
change in a bit must take place within a given time limit. This difference is also illustrated by the
following example:

Example 3.3.2. At sea state 1 [Condition], the Radar System [Subject] shall detect [Action]
targets [Object] at ranges up to 100 nautical miles [Constraint of Action].

Finally, here is an example without a condition:

Example 3.3.3. The invoice system [Subject] shall display [Action] pending customer invoices
[Object] in ascending order in which invoices are to be paid [Constraint of Action].

Exercise 3.1 Consider the requirements below. Are these requirements written according to
the syntax described in the ISO 29148 standard? If not, rewrite the requirement according to the
syntax. In both cases, clearly indicate the parts of the syntax ([Subject], etc.) in the requirement.

1. The system shall process at least 40 executing jobs at a time.

2. The system shall provide the means for the resource provider to see on which project this
resource is working.

3. The system shall provide the means for the system admin to perform his actions on a
computer with Windows XP, Mac OS X or Linux.

4. If one of the resources disappears while it was performing a job, the system should re-queue
the job.

3.4 Characteristics

To help reach an agreed understanding between stakeholders, each individual requirement needs
to possess specific characteristics. Before going into more details, we can already state that any
requirement shall:

• solve a stakeholder objective,
• be about the (software) system,
• be verifiable.

Requirements must be related to the needs of stakeholders. That is, we should know why a given
functionality of the system is needed. A common mistake is to express requirements about users.
Furthermore, because requirements are used as specifications, we must have the possibility to
actually check whether a system meets its requirements. In this section we describe characteristics
that good requirements should have, both individually and within a set of requirements. The
characteristics can be used to validate the requirements.

3.4.1 Characteristics of individual requirements

We here review the main characteristics provided to us by the ISO 29148 standard (ISO, 2018,
Section 5.2.5) before discussing some examples.
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Necessary Essential functionalities of the system should be included in the requirements. The
system is not able to fulfil a stakeholder objective if this requirement is not implemented.
Note that still, requirements may be prioritized in order of importance.

Appropriate Requirements need to specify what the system is expected to do without telling
how the system will do it. Requirements must be independent of implementation details,
such as algorithms or architectures.
For instance, a good requirement would be “The system shall sort packages” as opposed to
“The system shall sort packages using the QuickSort algorithm”.
Of course, one reason to be tempted to mention implementation details in a requirement
might be to express that certain performance criteria need to be met. However, in such a
case, an additional (non-functional) requirement should be defined addressing the expected
performance, without enforcing the use of a particular algorithm. In that way, the require-
ments are robust against technical developments in the future, for instance if at some point,
a more efficient algorithm has been developed.

Unambiguous A requirement should have exactly one interpretation. There should be only
one way to understand a requirement. This is in general very hard to achieve using natural
language (such as English), as natural language descriptions are often open to interpretation,
depending, for instance, on the context. By keeping each requirement short and following
the syntax proposed by the standard, it is feasible to write clear requirements.

Complete The requirement should contain all information that is necessary to understand it.
Singular To ensure clarity, a requirement must include no more than one statement. If more are

needed, multiple requirements should be defined. This helps making requirements simple,
easy to understand, and unambiguous.

Feasible A system satisfying the requirement can be implemented within set constraints. Con-
straints are typically time and money.

Verifiable We must have the possibility to prove (or disprove) that the system satisfies a given
requirement. In other words, a requirement defines what a system should be able to do, and
it is important that we can check the system.

Correct Requirements need to be upward traceable to stakeholder needs. We should keep in
mind that the goal of requirements is to come to an agreement about what the system must
do. A requirement therefore needs to be justifiable by linking it to a stakeholder goal or
need.

Conforming The requirements should follow an agreed upon standard template and syntax. In
this course, for conformance we expect our requirements to follow the syntax prescribed by
the ISO standard.

Exercise 3.2 The following example requirements have been written by software engineers at
CERN, European Laboratory for Particle Physics and pertain to the upgrade of an authoriza-
tion management system database. Analyse these requirements according to the characteristics
of individual requirements. If the requirements does not satisfy the characteristics, propose an
alternative requirement, and also indicate how that requirement fits with the requirement syntax.

1. The information which is stored on the database can be accessed by any standard computer
on the CERN network.

2. In order to obtain a CERN car sticker the person must have a valid CERN ID.

3. The opening of the software shall take less than 3-4 seconds under normal working condi-
tions.

4. The user shall have access to a French - English dictionary. The user shall ask questions or
propose suggestions for words translations by mailing to the administrators.

5. The software will be available 24hrs 365d/year.
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3.4.2 Characteristics of a set of requirements

A well-formed set of requirements needs to possess the following characteristics:

Complete What is meant here by the standard is that the set of requirements contains everything
pertinent to the system.

Consistent There should be no contradictory or overlapping requirements. Furthermore, the
same terminology and measurements are used in the entire set of requirements.

Feasible The set of requirements is “realistic” in the sense that it can be achieved under life cycle
constraints (costs, schedule, etc. . . . )

Comprehensible The set of requirements is written in such a way that the reader can understand
what is expected of the system. In particular, remember that the requirements form an
agreed understanding between stakeholders, and therefore, all stakeholders should be able
to understand the set of requirements.

Able to be validated The set of requirements is such that it can be shown (proven) that an
implementation that satisfies the requirements solves the stakeholder needs.

3.4.3 Requirement language criteria

The language used when writing requirements shall be as precise as possible in order to adhere
to the requirements characteristics introduced in this section. In particular, vague terms shall be
avoided. Here is a non-exhaustive list taken from (ISO, 2018, Section 5.2.7) of terms that shall be
avoided in the requirements:

• Superlatives: such as best, most.
• Subjective language: user friendly, easy to use, cost effective.
• Vague pronouns: it, this, that.
• Ambiguous adverbs and adjectives: almost always, significant, minimal.
• Open-ended, non-verifiable terms: provide support, but not limited to, as a minimum.
• Comparative phrases: better than, higher quality
• Loopholes: if possible, as appropriate, as applicable.
• Negative statements
• Passive voice: shall be able

3.4.4 Attributes

Attributes are used to further explain and document a requirement. A requirement is a sentence
following the proposed syntax. To review or analyse a requirement, it is important to know more
about the context of this requirement. Here are some examples of attributes, partly taken from
the ISO 29148 standard ISO (2018):

Identification A requirement should be uniquely identified.
Dependency It is important to identify dependencies between requirements. It should be the

case that if a primary requirement is removed, the supporting requirement(s) can also be
removed. When dealing with the initial specification, requirements can remain quite abstract
and dependencies should be avoided.

Source Source denotes here the originator of the requirement. Knowing the source – and there
may be multiple sources – is important to identify which stakeholder must be consulted for
clarification, modification, or deletion.

Rationale The rationale behind each requirement should be captured. The rationale addresses
the reasons why the requirement is required.

Priority The priority of each requirement should be identified.

On of the common ways to prioritize requirements is using the MoSCoW method. In this
acronym, the letters stand for:
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• Must have: these requirements are critical in order for the system to be a success.
• Should have: these requirements are important, but the system is usable if these requirements
are not implemented. They can, e.g., be held back for a later release of the system.

• Could have: these requirements are desirable but not necessary. They will only be imple-
mented when time/budget permit.

• Won’t have: these requirements will probably not be addressed in the current project, but
they could be interesting for future developments.

The standard proposes more examples. In practice, specific development teams or organization
may have their own attributes.

3.5 Requirements document

The requirements are collected in a requirements document, such that the characteristics on indi-
vidual requirements and those on sets of requirements are satisfied. With each of the requirements
the indicated attributes are associated.

To clarify the actors that are involved with the system we separately include a list of actors
with their goal in the requirements document. Note that actors can be humans, but also other
systems that the system that we are developing interacts with.

3.5.1 Software systems requirements

Most of the traditional examples of requirements documents describe the requirements for a soft-
ware system, where the actors involved with the system are human.

Example 3.5.1. Consider the following description:1

The LIS is a software system that supports operations of a library. The LIS is capable
of running on various commonly used operating systems (Windows, UNIX, Mac OS
X, etc.) and is easy to maintain. The library lends books and magazines to borrowers,
who are registered in the system, as are the books and magazines. The library han-
dles the purchase of new titles for the library. Popular titles are bought in multiple
copies. Old books, and magazines are removed when they are out of date or in poor
condition. The LIS should support two kinds of users: librarians and borrowers. The
librarian is an employee of the library who interacts with the LIS to manage library
holdings. Librarians can create, update, and delete information about library titles
and borrowers. They can also generate a report about borrowers and about titles in
the LIS. A borrower is a library user who can make a loan of a copy of a title that is
part of the library holdings. A borrower can also reserve a book or magazine that is
not currently available in the library, so that when it is returned or acquired by the
library, that person is notified. The reservation is cancelled when the borrower checks
out the book or magazine or through an explicit cancelling procedure. Librarians and
borrowers make requests and interact with the LIS through a library kiosk (a computer
interface). Loans and returns of library material are processed using an ID scanner.

We write down requirements for this system systematically using three steps:

1. Identify the system
2. Identify the actors and their goal
3. Go through the text to try if each sentence gives rise to one or more requirements.

Our analysis is the following:

1. Identify the system: LIS software

1adapted from http://www.swenet.org/Materials/86/req3-exercise.pdf

http://www.swenet.org/Materials/86/req3-exercise.pdf
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2. Identify the actors and their goal:

Librarian manage library holdings.
Borrower reserve and borrow books.

3. We give some of the requirements for this system and explain how we obtained them. You
are to identify the rest of the requirements in Exercise 3.3.
The LIS is capable of running on various commonly used operating systems (Windows,
UNIX, Mac OS X, etc.) and is easy to maintain.
Here there are two possible requirements: (1) on which systems must be supported and (2)
easy maintenance. If system compatibilities are an essential aspect, we have the following
requirement:

R1 The LIS system shall run on the following operating systems: Windows 8, Mac OS X
from 10.11, and Ubuntu version 18.04.

It is important to make the list of possible systems explicit to make the requirement verifiable.
Easy maintenance is too vague a concept and cannot be a requirement. We can make this
more concrete, e.g. in terms of costs.

R2 The LIS system shall be maintainable at a yearly cost of at most €0.2 million.

The library lends books and magazines to borrowers, who are registered in the system, as are
the books and magazines.
There are two types of “objects” in the system:

R3 The LIS system shall support the registration of books, magazines, and borrowers.

Note that at this stage, we do not know more specifically who can register books, magazines
and borrowers.
The library handles the purchase of new titles for the library.
This does not say anything about the system. Should the purchase be done via the LIS
system? We assume it does not, therefore, the bought items only need to be registered,
which is already covered by R3.

As you can see in the example, although the description of the system is already reasonably
precise, when writing down our requirements we still had to make many assumptions and add
clarifications. During the software engineering process of a real system, of course, such assump-
tions and clarifications should be extracted from stakeholders, for instance using the requirements
elicitation techniques we described before.

Exercise 3.3 Consider the description of the LIS in Example 3.5.1. In the example we already
identified the system, the actors and their goal, and the first few requirements. Go through the
rest of the text, and write down the requirements that correspond to it.

3.5.2 Requirements for embedded systems

Nowadays, systems do not only communicate with human users, but also with other systems
or hardware. For example, in the domain of embedded systems or cyber-physical systems, we
often have to receive inputs such as sensor values or commands, or send outputs to devices. In
such situations, it is helpful to not only identify the actors involved with the system, but also
identify the inputs and outputs. Here we use the interpretation that inputs are received from the
environment, outputs are sent to the environment.

Example 3.5.2. Suppose we want to develop the control software of a hydraulic cylinder. A cylinder
is used in many robotics or other automation equipments (like production plants) to move arms,
objects, plates, etc. An example of a cylinder is shown in Figure 3.1.

We consider the following informal description of the system, from which we will extract
requirements.

2Source: https://en.wikipedia.org/wiki/File:Cutawayweldedcylinder544x123.jpg, this image is
in the public domain

https://en.wikipedia.org/wiki/File:Cutawayweldedcylinder544x123.jpg
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Figure 3.1: Hydraulic cylinder2

The cylinder basically consists of a piston that is moving from two positions. The
initial position will be called the zero position and the position reached when the
piston has been pushed to the end will be called the end position. Below you will find
a description of the control software of the cylinder. For brevity, we will simply call it
the cylinder.

The cylinder moves from a zero position to an end position. To know its position, the
cylinder has two sensors: one at the zero position and another one at the end position.
The cylinder is moved by a valve that either pushes the cylinder from the zero position
to the end position or pulls the cylinder from its end position to the zero position. LEDs
display if the cylinder is at the zero position or the end position. The cylinder can
be used by a number of commands. The cylinder produces a number of outputs that
users can observe. The outputs tell users whether the cylinder is at the zero position
or at the end position. The cylinder needs to first receive an “initialize” command
after being powered on. When the cylinder is initialized, it will tell the user that it is
at the zero position. The cylinder can then be moved by sending a move to end or a
move to zero commands. To guarantee the safety of users and other equipments, the
cylinder has an emergency stop button. Once this button is pressed, the cylinder will
immediately stop moving. The emergency procedure will also re-initialize the cylinder
to the zero position.

We first identify the actors with their goals from the informal description:

Operator Operate the cylinder.
Sensor0 Detect the cylinder’s piston at the zero position.
Sensor1 Detect the cylinder’s piston at the end position.
Valve Move the cylinder
LEDs Display the position of the cylinder.

Next we identify the inputs and outputs of the system.

• Inputs:

ID Name Rationale
IN000 inpInit Receives initialization signals
IN001 inpAt0 Receives signals from Sensor0
IN002 inpAt1 Receives signals from Sensor1
IN003 inpMove0 Receives commands to move the piston to

position 0
IN004 inpMove1 Receives commands to move the piston to

position 1
IN005 inpStop Receives emergency stop commands

• Outputs:
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ID Name Rationale
OUT000 outShow0 Sends signals to LEDs to show that the

piston is at position 0
OUT001 outShow1 Sends signals to LEDs to show that the

piston is at position 1
OUT002 outMove0 Sends signals to the valve to move the pis-

ton to position 0
OUT003 outMove1 Sends signals to the valve to move the pis-

ton to position 1
OUT004 outReady Makes observable if the system is initial-

ized or not

Finally we can identify the requirements. Since we have already identified the inputs and
outputs, we can refer to them directly in the requirements, making the requirements both more
accurate and more concise. We identify the first two requirements. For the sake of brevity we do
not explicitly present the sentence-by-sentence analysis of the informal description of the system.
We do indicate how the requirements adhere to the syntax. Priorities are indicated after the
identity of the requirement.

• The system needs to detect the piston’s position and make it observable.

R1 (S) When the inpAt0 signal is received from Sensor0 [Condition], the system [Sub-
ject] shall set [Action] the outShow0 bit [Object] within 1 ms [Constraint of Ac-
tion].

R2 (S) When inpAt1 signal is received [Condition], the system [Subject] shall set [Ac-
tion] the outShow1 bit [Object] within 1 ms [Constraint of Action].

Exercise 3.4 Recall the description of the cylinder in Example 3.5.2. We already identified two
requirements in the example. Write at least 5 additional requirements for this system.

3.6 Requirements in the Agile process

In modern development processes (like AGILE, SCRUM, XP, etc), the term “feature” is often
used. Nevertheless, the goal of a feature is very similar to a requirement: document a user need.

In traditional software engineering processes such as the V-model, the requirements are first
collected completely, before going on to the next phase of the software engineering process. How-
ever, in Agile development, a couple of user stories or scenarios are taken and fully developed in
a short iteration. The system with the added functionality supporting the user story is released,
and the process is repeated.

3.7 Conclusions

In this chapter, we presented a first specification method: requirements. Requirements are written
in natural language using semi-formal syntax. They are very easy to use and are widely used in
practice. At the very top level, requirements will specify the user needs. At that level of abstrac-
tion, requirements shall be understood by all stakeholders. The required technical background
to read these requirements should be low. Later in the life cycle, requirements will be refined
to software requirements, or sometimes even low level requirements. The goal of these refined
requirements is to specify to designers and programmers what they need to implement. The level
of detail is then much higher.

The main drawback of requirements is that they do not show any structure. It is a very long
list (realistic systems will have thousands of requirements) of text. It also does not tell about what
interactions the system should have with users. This is the purpose of use cases, also called user
stories or scenarios, that we discuss in the next chapter.



The Unified Modelling Language (UML) is one of the most widespread graphical modelling lan-
guages used to model object-oriented systems. It offers a collection of 14 different diagrams that
each model different aspects of the system to be modelled. Although it has been described in quite
a lot of detail, the standard describing UML is (intentionally) vague in many places, allowing the
user of the language to vary slightly in the precise semantics attributed to it. This is one of the
reasons for its popularity, but it also makes it hard to exchange models between different tools.
In this course we focus on the most commonly used diagrams. We follow the description of these
diagrams given in the book Seidl et al. (2015), which you should study in its entirety. A PDF
version of the book is available for download through the TU/e digital library. A link to the book
is available on the course’s Canvas page.
The book is based on version 2.4.1 of the UML standard (Object Management Group, 2011). The
latest version is 2.5.1 (Object Management Group, 2017), which has only limited differences with
version 2.4.1.
In the next chapters of this reader we point out the chapters in the book that you should read,
and offer exercises for the topics discussed in teh book.
If you want to create your own UML diagrams, for instance for assignments that are to be handed
in, you should use the tool UMLet.a

Before we take a closer look at each of the UML diagrams, read Seidl et al. (2015, Chapters 1 and
2).

ahttps://www.umlet.com
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Chapter 4

Use Case Diagrams

As discussed in Chapter 3, textual requirements are an easy specification method but fail at
specifying interactions between a system and its users. A use case describes an interaction scenario
and its possible alternatives. A use case diagram graphically depicts several use cases, their actors,
and their relationships.

At the end of this chapter, you

• can explain what a use case is;
• can explain what a use case diagram is;
• can reason about use cases and use case diagrams;
• can write detailed use case descriptions;
• can organize use cases in a use case diagram.

Study Seidl et al. (2015, Chapter 3).
The following exercises are selected from the e-learning environment that belongs to Seidl et al.

(2015), and adapted to open questions. They are intended to improve your understanding of the
basic concepts of use case diagrams.

Exercise 4.1 Model the following situation with a use case diagram: “An exam supervision is
done by one professor and three tutors.”

Exercise 4.2 Consider the following use case diagram clipping.

BA

For each of the following statements, indicate whether it is true or false.

1. A can execute the same use cases as B.

2. A inherits all of B’s associations.

3. B inherits all of A’s associations.

4. B can execute the same use cases as A.

Exercise 4.3 Model the following situation with a use case diagram: “A travel booking is
cancelled by a staff member or by the department head (who is also a staff member).”

Exercise 4.4 Model the following situation with a use case diagram: “A repair can be made by
a master, a trainee or any other repair shop employee.”

29



30 CHAPTER 4. USE CASE DIAGRAMS

Exercise 4.5 Model the following situation with a use case diagram: ‘A teacher is conducting
an interview with a student. In the course of that, the teacher always has to grade the student.”

Exercise 4.6 Model the following situation with a use case diagram: ‘A student edits their user
profile. In the course of that they can also change their password if they like.”

Exercise 4.7 Consider the following use case diagram.

Y

       X

B

A

«include»

1. Which are the valid combinations of actors that can communicate with use case A?

2. Which are the combinations for use case B?

Finally, we consider a number of situations that are described informally, for which we are to
construct a use case diagram.

Exercise 4.8 Consider the following description of a transport company.

The company owns a number of vehicles of different sizes which can transport goods.
A client submits a request for transportation by specifying the size of the package to
be transported, its source and destination. The distance between source and target
determines the amount of time during which the vehicle will be en route. The company
then sends an offer to the client by finding the first possible period during which a
vehicle of an appropriate size is available. If the client agrees with the terms of the
offer, it provides an account number and the authorization to withdraw the amount
of the offer from the account. Upon a successful transaction with the bank (given the
account information provided by the user), the amount of money will be transferred
to the company’s account and the company will schedule the transport as specified in
the offer.

1. Identify the actors.

2. Create a use case diagram for the system.

3. Give a detailed description of at least one use case.

Exercise 4.9 Consider the following description of an ATM system.

The ATM system can be started up or shut down by an operator. The operator can
also register the ATM in the bank’s central database. The customer can initiate a
session with the ATM by inserting their bank card. Within a session, they perform a
transaction, which can be withdrawing money from their account, checking the balance
of the account with the bank, or depositing money into the account. Before completing
the transaction, the customer needs to enter their PIN. The customer is only allowed
to enter an invalid PIN at most three times.
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1. Identify the actors.

2. Construct the use case diagram.

3. Give a detailed description of at least one use cases.

Exercise 4.10 Recall the description of the library information system (LIS) from Example 3.5.1.
In this exercise, you have to create a use case diagram that describes the functionality of the LIS.

1. Identify the actors.

2. Identify the use cases (and their relations).

3. Identify the associations.

4. Give a detailed description of one use case.

Exercise 4.11 Recall the description of the hydraulic cylinder from Example 3.5.2.

1. Draw a use case diagram for the system.

2. Write a detailed description for all the use cases.

Figure 4.1: Overview of railway

Exercise 4.12 Consider the embedded system of a railway controller. The railway controller
controls three tracks, two signals, and a crossing as depicted in Figure 4.1.

A signal shows either green or red. Each track is equipped with a sensor that shows the
presence of a train and the direction of its movement. The supervisor of the control system may
decide to change the status of the signal (from green to red or vice versa), or change the status of
the crossing (from closed to opened or vice versa).

1. If the supervisor decides to change a signal to green, the controller should make sure that:

(a) there is no train coming in the opposite direction towards the signal,
(b) the crossing is closed, and
(c) the signal in the opposite direction is red.

If the above checks are successful, then the signal will be changed or otherwise the supervisor
will be notified of the impossibility.

2. If the supervisor decides to change a signal to red, the controller should make sure that there
is no train on the track before the signal. If this is the case, then the signal will be changed
or otherwise, the supervisor will be notified of the impossibility.

3. If the supervisor decides to change a crossing to opened, the controller should make sure
that:

(a) there is no train on the track, where the crossing resides, and
(b) the signals before and after the crossing are red.

4. Closing a crossing is always possible.

Create a use case diagram for this system.
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Chapter 5

Class diagrams

Class diagrams support the specification of the structure of the system. They describe the elements
of the system and the relations between them. In object-oriented programming, the elements of
the class diagram are implemented as classes.

At the end of this chapter, you

• can explain what an object diagram is;
• can explain what a class diagram is;
• can reason about class diagrams;
• can relate object- and class diagrams;
• can construct class diagrams.

Study Seidl et al. (2015, Chapter 4).
Most of the following exercises are selected from the e-learning environment that belongs to

Seidl et al. (2015), and adapted to open questions. They are intended to improve your under-
standing of the basic concepts of class diagrams.

Exercise 5.1 Consider the following snippet of a class diagram, that describes a Circle class.

Circle

-center: Point
-radius: Double
#color: Color

+draw(): void
+getCenter(): Point
+getRadius(): Double
+getArea(): Double
+setSize(r: Double): void
#calculateArea(): Double

1. What are the private attributes of the class (if any)?

2. What are the protected attributes of the class (if any)?

3. What are the public attributes of the class (if any)?

4. What are the private operations of the class (if any)?

5. What are the protected operations of the class (if any)?

6. What are the public operations of the class (if any)?

Exercise 5.2 Model the following situation with a class diagram: “An order is made with exactly
one waiter, one waiter handles multiple orders”.
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Exercise 5.3 Model the following situation with a class diagram: “We want to model that one
tenant can rent multiple flats with different leasing contracts. Also, one flat can be rented by
multiple tenants with different leasing contracts.”

Exercise 5.4 Model the following situation with a class diagram: “Every restaurant has at least
one kitchen, one kitchen is part of exactly one restaurant.”

Exercise 5.5 Model the following situation with a class diagram: “An event may be part of
another event.”

Exercise 5.6 Model the following situation with a class diagram: “There are exactly two kinds
of participants, namely members and guests. Guests are invited by members.”

Finally, we consider a number of situations that are described informally, for which we are to
construct a class diagram.

Exercise 5.7 Consider the following description of a singly linked list, taken from (Goodrich
et al., 2015, p. 111)

“A linked list, in its simplest form, is a collection of nodes that collectively form a
linear sequence. In a singly linked list, each node stores a reference to an object that
is an element of the sequence, as well as a reference to the next node of the list.

A linked list’s representation relies on the collaboration of many objects. Minimally,
the linked list instance must keep a reference to the first node of the list, known as the
head. Without an explicit reference to the head, there would be no way to locate that
node. The last node of the list is known as the tail.”

Give a class diagram that describes the singly linked list with elements of type Type. The class
should allow to query the size of the list, i.e., the number of elements in the list, in constant time.
It should be possible to check whether the list is empty. Also, the list provides access to the first
and the last element in the list, elements can be added to the list at the beginning or at the end.
The method removeFirst should remove and return the first element of the list.

Exercise 5.8 Recall the description of the transport company in Exercise 4.8. Identify classes,
attributes, operations and relations in the description and the corresponding use-cases, and draw
the class diagram for this system.

Exercise 5.9 Reconsider the description of the LIS from Example 3.5.1, of which you completed
the requirements in Exercise 3.3, gave a use case diagram in Exercise 4.10. Identify classes,
attributes, operations and relations in the description and the corresponding use-cases, and draw
the class diagram for this system.

Exercise 5.10 Recall the railway crossing described in Exercise 4.12, and the corresponding
use case diagram. Identify classes, attributes and operations and draw the class diagram for this
system.

Exercise 5.11 Consider the embedded system of a traffic crossing controller. The controller
controls two roads, one crossing, and traffic light signals on both sides of the crossing. An example
of such a setup is illustrated below:
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Each traffic light signal shows either green, yellow or red. Each road is equipped with two sensors
in each driving direction: one in front of the corresponding traffic light to cross the crossing, and
the other at a bigger distance from the traffic light. The first is used to detect whether a car is
waiting to cross, the second is used to detect whether cars are currently approaching the crossing.
This setup is sketched in the following picture, in which the first type of sensor is coloured blue,
and the second type is black.

The control software should change the status of the signals under the right conditions, taking
into account that one of the roads (the vertical one in the picture above) has priority over the
other road, i.e., by default the signals for the vertical directions are green, and the other ones are
red, as in the picture above. The control software should work as follows:

• If a car is approaching from the left or the right, the control software can start changing
the signals, but only if no sensor on the vertical road is indicating that a car has (recently)
passed.

• If a car is waiting on the left or the right, the control software should start changing the
signals as soon as all sensors on the vertical road no longer indicate that a car has (recently)
passed.

• As soon as all sensors on the horizontal road indicate that no car has (recently) passed, the
control software should change the signals back to the default setup.

Changing the traffic lights involves performing the following steps in sequence:

• First change the signals that are currently green to yellow, and then to red;
• Then change the signals that were red before the changing procedure started to green.

Finally, the control software should be able to handle emergencies and maintenance sessions.
For this purpose, a supervisor can change the mode of the control software. In emergency mode,
all signals should be red. In maintenance mode, all signals should blink yellow. In standard
mode, the control software behaves in the normal fashion as explained above. When switching to
standard mode, the control software should switch the signals to the default setting.

To help you in the exercise, we provide the following use case diagram for the control software.
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The use cases in the diagram above are abstract, we do not provide detailed use case descriptions,
but this is enough to work on the exercise.

Identify classes, attributes, operations and associations and draw the class diagram for the
control software system.



Chapter 6

State machine diagrams

State machine diagrams support the specification of the behavior of the system. They describe
the states in which the system can be, and the way in which the system changes state.

At the end of this chapter, you

• can explain what an state machine diagram is;
• can reason about state machine diagrams;
• can construct state machine diagrams.

Study Seidl et al. (2015, Chapter 5).

The chapter in the book describes all different aspects of UML state machine diagrams and
illustrates how (sequences of) events are executed. In Chapter 13 we will make the semantics
of a subset of state machine diagrams precise. One thing the book does not clearly introduce is
a configuration of a state machine. A configuration contains the set of states in which a state
machine currently resides. Especially when a state machine diagram contains orthogonal states,
it does not suffice to reason about a single state that is entered, as done in Table 5.1 in the book.
Instead, we prefer the notation as in Table 6.1, which contains the same information as Table 5.1,
using configurations instead of entered states.

Event Configuration x y z

Start {A} 2 0
e2 {C,C1} 2 6
e1 {C,C1} 4
e3 {C,C2} 0 3
e4 {E} -1 2
e1 {C,C2} 0 4
e5 {A} -1 1 0

Table 6.1: Version of (Seidl et al., 2015, Table 5.1) using configurations instead of entered states.
Only changes in variables are included in the table for readability, so, if a cell for a variable is
empty, its value is the same as in the cell above.

In fact, it may sometimes be helpful to split the execution af the activities when an event is
processed, to clearly see what happens. For the same example, we then obtain Table 6.2.

Some of the following exercises are selected from the e-learning environment that belongs to
Seidl et al. (2015), and adapted to open questions. They are intended to improve your under-
standing of the basic concepts of state machine diagrams diagrams.

Exercise 6.1 Recall the state machine diagram from (Seidl et al., 2015, Figure 5.13), and assume
the state machine is initially in configuration {S3}.
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Event Configuration Comment x y z

Start start 2
{A} entry of A 0

e2 exit of A 1
transition, z = z ∗ 2 2
entry of C 2 3

{C,C1} entry of C1 6
e1 {C,C1} x = 4 in C1 4
e3 exit of C1 3

{C,C2} entry of C2 0
e4 exit of C2 -1

exit of C 1
{E} entry of E 2

e1 entry of C 2 4
{C,C2} entry of C2 0

e5 exit of C2 -1
exit of C 1

{A} entry of A 0

Table 6.2: Version of (Seidl et al., 2015, Table 5.1) with individual rows for the individual activities.
The new configuration is only shown on the line of the last activity.

1. What configuration is the state machine in after the occurrences of the events e2, e4, e4 (in
that order)?

2. What configuration is the state machine in after the occurrences of the events e1, e3, e4?

Exercise 6.2 Consider the following state machine diagram.

H*H

G

F

B

ED

C

A

e6

e2

e4 

e1
e5 e3

e4

e2

e2

1. Suppose the state machine is in configuration {A,C,E}. Explain what happens when first
event e1 occurs, and next event e3 occurs; in what configuration is the state machine after
executing these events?

2. Suppose the state machine is in configuration {A,C,E}. Explain what happens when first
event e1 occurs, and next event e5 occurs; in what configuration is the state machine after
executing these events?

3. Suppose the state machine is in configuration {A,C,E}. Explain what happens when first
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event e1 occurs, and next event e6 occurs; in what configuration is the state machine after
executing these events?

Exercise 6.3 Consider the following state machine diagram.

H

S5

S4S3S2

S1

e3

e2

e2

e1

e1e1

1. What configuration is the state machine in after the occurrences of the events e1, e2, e2, e1?

2. What configuration is the state machine in after the occurrences of the events e1, e2, e3, e1?

3. What configuration is the state machine in after the occurrences of the events e1, e1, e2, e2?

4. What configuration is the state machine in after the occurrences of the events e1, e1, e2, e2,
e1, e1, e2, e2?

Exercise 6.4 Consider the following UML state machine diagram.

T2T1

S2S1

U

S

T

Q1

Q

P2

P1

e

c

c

f

d

c[S2]

e

f

a

ba

1. What are the types of the states P1, Q, U, and S.

2. Write down all configurations with respect to the root of the state diagram. (They do not
necessarily have to be reachable).

3. What configuration is the state machine in after the occurrences of the events a, a, d?

4. What configuration is the state machine in after the occurrences of the events a, a, d, f?

5. What configuration is the state machine in after the occurrences of the events a, b, e, c?
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Exercise 6.5 Consider the following state machine diagram.

C

e 3 / x + +
e x i t / x + +

B

en t ry / x++

D

e n t r y / x - -

A

entry/x = x*2
exi t /x = (x*2)-1

/ x = 1
e5

e1

e4/x  = x*2e 2 / x + +

1. What is the value of x after the occurrence of the event chain e2, e1, e4, e3, e5?

2. What is the value of x after the occurrence of the event chain e1, e3, e4, e4, e3, e5?

3. What is the value of x after the occurrence of the event chain e2, e2, e1, e3, e5?

Exercise 6.6 Recall the railway crossing described in Exercise 5.10, for which we constructed a
class diagram.

The controller actually has a state. Draw a state machine diagram for the controller of the
railway crossing.

Exercise 6.7 Recall the traffic crossing controller described in Exercise 5.11, for which we con-
structed a class diagram.

Draw a state machine diagram for the control software, by which you specify how it should
react to environment triggers. Define suitable events to reason about triggers and activities. Try
to create a diagram with at least two hierarchy levels.



Chapter 7

Sequence diagrams

Sequence diagrams are used to model the inter-object behavior, i.e., the communication between
objects in the system. They can, for instance, be used to specify the link between a use case and
the methods and classes defined in class diagrams.

At the end of this chapter, you

• can explain what a sequence diagram is;
• can construct sequence diagrams;
• can relate sequence diagrams with class diagrams.

Study Seidl et al. (2015, Chapter 6).

Most of the following exercises are selected from the e-learning environment that belongs to
Seidl et al. (2015), and adapted to open questions. They are intended to improve your under-
standing of the basic concepts of sequence diagrams.

Exercise 7.1 Consider the following sequence diagram. List all traces that are possible.

:D:C:B:A

par

d

c

b

a

Exercise 7.2 Consider the following sequence diagram. List all traces that are possible.
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:F:E:D:C:B:A

par

d

critical

c

b

a

Exercise 7.3 Consider the following sequence diagram. For each of the classes A, B and C, list
the operations (with the types of the parameters and the type of the operation) that the class has
according to the sequence diagram.

c1:Cb2:Ba2:Ab1:Ba1:A

            y(456)

            x:"abc"

z

    x

y(123)

x

Exercise 7.4 You are given the following sequence diagram. Change the model such that b is
always sent right after a.

:E:D:C:B:A

h

g

f

    e

    d

c

    b

a
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The rest of the exercises are modeling exercises that continue on models that we have developed
in previous chapters.

Exercise 7.5 Recall the railway crossing described in Exercise 4.12, for which you developed a
class diagram and state machine diagram in Exercises 5.10, and 6.6.

Using the class diagram you produced and the use case diagram, draw a sequence diagram
based on one of the use cases.

Exercise 7.6 Recall the traffic crossing controller described in Exercise 5.11, for which you
developed a class diagram, and whose state machine diagram was modeled in Exercise 6.7.

Based on the use case diagram and the class diagram you constructed, draw a sequence diagram
based on one of the use cases. Validate that the sequence diagram correctly relates to the class
diagram.
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Chapter 8

Activity diagrams

This chapter presents activity diagrams. An activity diagram is a kind of behavioral specification.
It is quite suitable to specify workflows or complex algorithms.

At the end of this chapter, you

• can explain what an activity diagram is;
• can construct activity diagrams;
• can reason about the flows described by activity diagrams.

Study Seidl et al. (2015, Chapter 7).
Most of the following exercises are selected from the e-learning environment that belongs to

Seidl et al. (2015), and adapted to open questions. They are intended to improve your under-
standing of the basic concepts of activity diagrams.

Exercise 8.1 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

B

CA

Exercise 8.2 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

B

CA

Exercise 8.3 You are given the following activity diagram. Give all action sequences (to comple-
tion) that are possible during one execution of the activity diagram. If an action is interrupted,
include it in your sequence.
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A

DB

C

Exercise 8.4 You are given the following activity diagram. Give all action sequences (to comple-
tion) that are possible during one execution of the activity diagram. If an action is interrupted,
include it in your sequence.

A C

B

    e

Exercise 8.5 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

A

C

B

[..]

[..]

Exercise 8.6 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

DA

C

B

Exercise 8.7 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.
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C

A

D

B

Exercise 8.8 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

C

A

D

B

Exercise 8.9 You are given the following activity diagram. Give all action sequences (to com-
pletion) that are possible during one execution of the activity diagram.

C

A

D

B

The rest of the exercises are modeling exercises that continue on models that we have developed
in previous chapters.

Exercise 8.10 Recall the railway crossing described in Exercise 4.12, for which you developed a
class diagram, a state machine diagram and a sequence diagram in Exercises 5.10, 6.6, and 7.5.

Draw an activity diagram describing the complete algorithm of the controller. The controller
takes a command from the supervisor. Commands are open, close, turn green and turn red. The
activity diagram describes what the controller should do for each command.

Exercise 8.11 Recall the traffic crossing controller described in Exercise 5.11, for which you
developed a class diagram, and whose state machine diagram and sequence diagram were modeled
in Exercises 6.7 and 8.11.

Identify a scenario (say when the supervisor sets the software in “Maintenance Mode” or
“Standard Mode”), then identify all the activities/actions that the control software should perform
and create an Activity Diagram based on the chosen scenario and activities that are part of that
scenario.
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Before you start with this part of the course, make sure you read Seidl et al. (2015, Chapters 8
and 9). Chapter 8 gives a number of examples where the different models discussed in this course
are integrated and used to model a system. You should carefully study this chapter. Chapter 9
discusses some further topics related to UML.
As we have seen in previous chapters, the Unified Modelling Language (UML), although very
extensive, does not always have a clear meaning. If one wants to be able to precisely specify the
behavior of systems, and either show that the (specification of) the system satisfies its require-
ments, or test whether the implementation of a system is consistent with its specification, we will
need to have a more precise specification.
In this second part of the course, we focus on specification techniques that are precisely specified.
In Chapter 10 we first describe a high-level language, Promela, that can be used to describe the
behavior of (parallel) systems. In the same chapter we introduce the tool Spin that can be used
to formally verify requirements of Promela models. The semantics of Promela models can be
described using Kripke structures, that we formally describe in Chapter 9. Requirements can
be formally specified using temporal logic. In Chapter 11 we introduce Linear Temporal Logic
(LTL). We will explain when a Kripke structure satisfies an LTL property. Kripke structures
focus on the properties that hold in a specific state. This model is well-suited for temporal logic
model checking. For many other purposes, it is natural to focus on the interactions instead. In
Chapter 12 we show how the behavior of systems can be described using labelled transition systems
(LTSs), in which the transitions are labelled instead of the states. We next show that we can give
a precise semantics of a subset of UML state machine diagrams using LTSs in Chapter 13, linking
the informal specification techniques of UML to the formal techniques in this second part of the
course.
Finally, in Chapter 14 we introduce a model-based testing technique based on input-output con-
formance that allows to automatically generate test cases for specifications described as labelled
transition systems.

Part II

Formal specification and
verification techniques
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Chapter 9

Kripke Structures

In the previous chapters we introduced several UML diagrams. Even though the meaning of these
diagrams is relatively well-defined, the UML standard leaves a lot of room for interpretation.
Also, the standard defines some “variation points”, where the user can actually assign their own
meaning to a diagram. Furthermore, the models are informal in the sense that their notions and
their semantics are only defined in plain English, and not mathematically. In the rest of the reader,
we introduce models of software systems that are mathematically precisely defined. We will use
these models to specify software systems. Thanks to their well-defined mathematical semantics,
we will be able to reason about these models using mathematical logics. Logics are discussed in
Chapter 11.

In this chapter we discuss Kripke structures. These are basic formalisms that can be used to
precisely express the semantics of a model. In subsequent chapters, we will give a textual language
that can be used to describe Kripke structures, and use these models and their associated tooling
to reason about the behavior of systems.

At the end of this chapter, you

• can describe a system using Kripke structures;
• can identify states, transitions, and paths.

When defining precise semantics of a model (such as the Promela models described in Chap-
ter 10) there are two main formalisms that are commonly used. They differ in their focus. Labelled
transition systems describe the behavior of systems by focusing on the externally observable be-
havior. In this model, transitions are labelled by actions, and states are not labelled. We will
study LTSs in detail in Chapter 12. In contrast, Kripke structures focus on the state of system,
by labelling states with atomic propositions, and not labelling the transitions. In this chapter, our
focus is on the latter.

9.1 Kripke structures

Kripke structures are state-transition systems in which the states are labelled. Atomic propositions
are used to represent state information, that is, information about the current state of the system.
This can be, for instance, the state of registers of a computer or the current value of program
variables. For verification purposes, atomic propositions can help formulate requirements about a
Kripke structure.

Definition 9.1.1 (Kripke structure). A Kripke structure is a tuple (S, s0,→,AP , L), where

• S is a set of states;
• s0 ∈ S is the initial state;
• →⊆ S × S is a transition relation;
• AP is a set of atomic propositions; and
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• L : S → 2AP is a labelling function that assigns a set of atomic propositions to every state.

Typically we assume that the transition relation is total, i.e., every state has at least one outgoing
transition. This, in particular, will simplify the definition of the semantics of linear temporal logic
in Chapter 11. A Kripke structure is finite if S, → and AP are finite. As before, we write s→ s′

for (s, s′) ∈→.

s0

s1

{coinInserted}
s2 {brewingTea, coinInserted}s3{brewingCoffee, coinInserted}

Figure 9.1: Kripke structure of a simple coffee machine producing either coffee or tea.

Example 9.1.1. Consider the example in Figure 9.1. This represents a system similar to the coffee
machine in Figure 12.1, but as a Kripke structure. The set of states in this Kripke structure is
S = {s0, s1, s2, s3}, with s0 the initial state. The transitions relation→= {(s0, s1), (s1, s2), (s1, s3),
(s2, s0), (s3, s0)}. The atomic propositions AP = {coinInserted , brewingTea, brewingCoffee}. The
labelling function is

• L(s0) = ∅
• L(s1) = {coinInserted}
• L(s2) = {coinInserted , brewingTea}
• L(s3) = {coinInserted , brewingCoffee}
A requirement about the state of this machine, that we could check using the atomic proposi-

tions assigned in the Kripke structure might be “The machine shall always have received a coin
before brewing coffee”. In Chapter 11 we will explore the topic of formally defining properties
about a system represented as a Kripke structure further.

Example 9.1.2. As another example, suppose we have two threads in a program that want to
access some shared resource. The resource must be accessed under mutual exclusion, meaning
that only one process can access it at the same time. Therefore, each of the processes can be in a
non-critical section, where it does not need access to the resource, it can try to get access to the
critical section, and eventually it can be in its critical section. We model this protocol using a
Kripke structure, where states are labelled with atomic propositions trying i and ini for i ∈ {0, 1}.
The Kripke structure is shown in Figure 9.2.

Exercise 9.1 Consider an oven. This oven has:

• a button to start cooking
• a button to stop cooking
• a button to open the door
• a sensor to detect when the door is closed or opened
• when the oven stops cooking, it rings a bell

Create a Kripke structure that models the oven. Identify a set of atomic propositions such that
you can express the following properties:

• The oven is never cooking with its door opened.
• The over starts cooking only after the start button is pressed.
• After starting to cook, the oven eventually stops cooking.

Exercise 9.2 The game of tic-tac-toe1 is played on a 3-by-3 grid. The ×-player and the #-player

1See https://en.wikipedia.org/wiki/Tic-tac-toe.

https://en.wikipedia.org/wiki/Tic-tac-toe
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{trying0}

{in0}
{trying0,
trying1}

{in0, trying1}

{trying1}

{in1}
{trying0,
trying1}

{in1, trying0}

Figure 9.2: Kripke structure modelling mutual exclusion between two processes.

alternatingly place their respective symbol of {×,#} on an empty cell in the grid. A player wins
upon placing their symbol in such a way that their symbol appears thrice in the same row, column
or diagonal. Model this game as a Kripke structure.

9.2 Paths

A Kripke structure describes all states of the system, and how the system can change between
these states. Runs of system described with a Kripke structure are described using paths.

Definition 9.2.1 (Path). Let (S, s0,→,AP , L) be a Kripke structure. A path starting in a state
s ∈ S is a possibly infinite sequence of states π = s, s1, s2, . . . , such that s→ s1, and for all i > 1,
si−1 → si. We write paths(s) to denote the set of all (finite and infinite) paths starting in s.

Since Kripke structures have a total transition relation, i.e., every state has an outgoing tran-
sition, there are no deadlocks in a Kripke structure. Therefore, we often only consider infinite
paths. The set of infinite paths starting in state s is denoted pathsω(s).

Definition 9.2.2 (Notation for paths). Let π = s0, s1, s2, . . . be path. We use the following
notation:

• π[i] denotes the state at position i, i.e., it is state si. In particular, π[0] is the first state of
the path.

• π[i . . .] is the suffix of the path starting at position i. For example, π[1 . . .] is the path π
from which the first state has been removed. Note that π[0 . . .] = π.

Example 9.2.1. Consider the Kripke structure in Figure 9.1. The following are examples of paths
in this Kripke structures:

• s0, s1, s3, s0
• (s0, s1, s2)

ω is the infinite path cyling through these three states infinitely often.
• (s0, s1, s2, s0, s1, s3)

ω.

9.3 Applications

Kripke structures are used to verify (model check) systems. Kripke structures are traditionally
verified using logics such as LTL, CTL and CTL∗. In this course we restrict ourselves to introducing
LTL, see Chapter 11, and we will only cover its syntax and semantics. We will not go into the
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details of algorithms used to verify LTL properties on a Kripke structure. Algorithmic details of
some of these logics are also covered in the master’s course algorithms for model checking.

Of course, describing a system directly using Kripke structures is tedious and error prone,
because they tend to become large and unwieldy. Therefore, typically they are generated from
high level languages such as Promela, which we introduce in Chapter 10.



Chapter 10

Promela and the SPIN model
checker

In the first part of this course, we have used UML models to specify systems. In particular, we
used UML state machine diagrams for describing behavior. However, the state machine diagram
semantics is not clearly defined. In the previous chapter we have seen that the behavior of a
system can be described using Kripke structures. However, descriptions using Kripke structures
quickly become too complex to understand and maintain. It is therefore infeasible to specify the
Kripke structure directly. This issue can be addressed by using a higher-level language that has a
precisely defined semantics in terms of Kripke structures.

In this chapter we introduce the language Promela, which is a high-level language that can be
used to describe parallel, communicating processes. A Promela model essentially has a Kripke
structure semantics, but for the sake of synchronization and displaying the state space of a model,
we typically include the statements on the transitions.

The Spin model checker1 supports the automatic verification of Promela models using asser-
tions and LTL properties (see Chapter 11). Note that Spin is primarily used as a command-line
tool, and our instructions will focus on that. A graphical user interface that could be used is
jSpin,2 but the tool has not seen updates in a long time. The book Ben-Ari (2008) serves as a
nice introduction to Spin as a language and tool, and it uses jSpin for its explanations.

Model checking, the technique used by Spin is an example of a formal method. Formal methods
are the applied mathematics for modelling and analyzing computer systems. They offer a large
potential for an early integration of verification in the design process, so we can detect fundamental
issues in the design of a system before implementation. They provide more effective verification,
i.e., they typically cover a larger part of the system than testing. Finally, studies show that the
application of formal methods can actually reduce the time needed for software development, and
the number of bugs found in production. The use of formal methods is highly recommended by
the IEC, FAA and NASA for safety-critical software. The Spin model checker has, for instance,
been used to verify the Mars rover Curiosity, see Holzmann (2014).

At the end of this chapter, you

• can model simple, communicating systems using Promela;
• can detect deadlocks in Promela models using Spin;
• can use assertions to formalize safety properties in Promela models;
• can verify whether a Promela model satisfies such properties;
• can explain a counterexample if the model contains a deadlock or violates an assertion.

For background material on Spin you are referred to Ben-Ari (2008). Also, the Spin manual3

provides a wealth of information. Installation and usage instructions for Spin on different platforms

1https://spinroot.com
2http://www.weizmann.ac.il/sci-tea/benari/software-and-learning-materials/jspin
3https://spinroot.com/spin/Man/Manual.html
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are available on the Canvas page of the course. The examples in this chapter can by edited with
any text editor.4 All of the commands can be run from the command line, assuming that the spin

executable is installed in the PATH. If you insist on using a graphical frontend, consider using the
jSpin interface, which is also used in Ben-Ari (2008).

10.1 Specifying Promela models

A Promelamodel consists of type declarations, channel declarations, global variable declarations,
process declarations, and the specification of an initial process. Since a Promelamodel represents
a finite model, we need to make sure that data, channels, processes and process creation are all
finite. In this section, we first introduce the primitives needed to model shared memory processes,
that is, processes that do not communicate using explicitly defined synchronous or asynchronous
channels. We will discuss channels in Section 10.4.

10.1.1 A simple example

Consider the following example definition of a process Alpha in Promela. The process has formal
parameters x and y, which have type int. It declares local variable z of type int and initializes
it to 1. Keyword skip denotes the empty statement. Subsequently, it assigns x to 2. Finally, the
expression x>2 && y>z && z==1 is executable if it evaluates to true.

proctype Alpha(int x; int y) {
int z = 1;
skip;
x=2;
x>2 && y>z && z==1;
skip;

}

init {
run Alpha(5,3);

}

Using the init keyword, we can specify the behavior of a process that is active in the initial
system state. An init process has no parameters. The init process is typically used to initialize
global variables, and to instantiate other processes through the use of the run operator. In this
case, the process Alpha is initialized with value 5 for its parameter x and 3 for parameter y. The
run operator creates a new process which runs asynchronously with the process that are already
active at the point where run is called. Since run is called from the initial process init, in this
example we end up with two running processed.

We can run a random simulation of a Promela model using Spin as follows.

spin alpha.pml

If we run this simulation, we get the following fairly cryptic output.

timeout
#processes: 2

3: proc 1 (Alpha:1) alpha.pml:5 (state 3)
3: proc 0 (:init::1) alpha.pml:11 (state 2) <valid end state>

2 processes created

This does not give us a lot of information. It only tells us that two processes were created (:init:
and Alpha), and that one of the two processes triggers a timeout. In order to understand why one
of the processes times out, let us get some more information.

There are three options that can be passed to Spin in order to get more information in the
output that are relevant at this point:

4We suggest to use a text editor with syntax highlighting for Promela, e.g. Visual Studio Code.
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• -p prints all statements that are executed.
• -g prints all global variables and their current value.
• -l prints all local variables and their current value.

Our example does not have global variables. We show the output with the other two options
enabled.

spin -p -l alpha.pml

This produces the following output, that shows that first the initial process init with process id
0 (proc 0) is created. This process in turn creates the process Alpha with process id 1. Alpha

initializes variable y to 1. From this, it executes a skip to state 1, shown on line 2: in the output.
Subsequently it sets x to 2, after which a timeout appears.

0: proc - (:root:) creates proc 0 (:init:)
Starting Alpha with pid 1

1: proc 0 (:init::1) creates proc 1 (Alpha)
1: proc 0 (:init::1) alpha.pml:10 (state 1) [(run Alpha(5,3))]
2: proc 1 (Alpha:1) alpha.pml:3 (state 1) [(1)]
3: proc 1 (Alpha:1) alpha.pml:4 (state 2) [x = 2]

Alpha(1):x = 2
timeout

#processes: 2
3: proc 1 (Alpha:1) alpha.pml:5 (state 3)

Alpha(1):z = 1
Alpha(1):y = 3
Alpha(1):x = 2

3: proc 0 (:init::1) alpha.pml:11 (state 2) <valid end state>
2 processes created

The output now does provide us with enough information to understand why the timeout is
triggered: After setting x to 2, process Alpha indicates the timeout at condition x>2 && y>z &&

z==1, as, at that point in the execution, it holds that x==2, so the condition cannot be executed,
and execution halts at that point in the process.

10.1.2 Processes

The example from the previous section already introduces a lot of Promela’s syntax. Let us first
look at the definition of processes. A process in Promela is defined as a proctype that consists of
a name, a list of formal parameters, local variable declarations and a body. The body consists of
a sequence of statements, in which global variables can be accessed.

In Promela, processes execute concurrently with all other processes, independent of their
relative speed. Communication between processes can be done using shared variables (global
variables) or using channels. When executing processes in parallel, there may be several processes
of the same type. In that case, each process has its own local state, that consists of the process
counter (or program counter), which indicates the location of the process within the proctype

body, as well as the values of the local variables.
Processes can be created in two ways. First of all, a process can be created using the run

statement, which returns a process id, at any point in the execution. Processes start executing
after the run statement has created them. Alternatively, processes can be created by adding active

in front of the proctype declaration. Finally, there is a special process init. Both init and active

are created at the start of the execution of the process.
Every process has a process id, which can be accessed from the process using _pid. The creation

of processes and the use of _pid is illustrated in the following example.

Example 10.1.1. Consider the following process.

active proctype Hello() {
printf("Hello, my pid is: %d\n", _pid);

}
init {
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int lastpid;
printf("init, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

During an execution, three processes are created: one for the initial process init, one for the
instance of Hello that is created because it is marked active, and another one because of the call
to Hello from the initial process.

If we perform a random simulation of this process (stored in hello.pml), using spin -p

hello.pml, we get, e.g., the following output.

0: proc - (:root:) creates proc 0 (Hello)
0: proc - (:root:) creates proc 1 (:init:)

init, my pid is: 1
1 :init ini printf(’init, my pid is: %d\\n’,_pid
Starting Hello with pid 2

2: proc 1 (:init::1) creates proc 2 (Hello)
1 :init ini lastpid = run Hello()
last pid was: 2
1 :init ini printf(’last pid was: %d\\n’,lastpid 2
Hello, my pid is: 2
2 Hello 1) printf(’Hello, my pid is: %d\\n’,_pi 2
Hello, my pid is: 0
0 Hello 1) printf(’Hello, my pid is: %d\\n’,_pi 2

5: proc 2 (Hello:1) terminates
5: proc 1 (:init::1) terminates
5: proc 0 (Hello:1) terminates

3 processes created

This confirms that, indeed, three processes were created. In this particular process, the init

process has _pid 1, the Hello instance created using the run statement in Init has _pid 2, and the
Hello instance that was created due to the active marking has _pid 0.

Note that this also shows that the init process does not necessarily get the lowest _pid. In
fact, the init and active processes are instantiated in declaration order, and run processes are
created when the instruction is processed.

The previous example also illustrates how the C-style format string printf can be used to
output information from a Promela model. Note that this is just diagnostic information, and
does not affect the state space that is generated.

Using the active keyword, also multiple processes can be created. For instance, one can write
active [N] proctype P() to create N copies of process P.

Example 10.1.2. We illustrate this using an adaptation of our previous example, creating 2 copies
of Hello.

active[2] proctype Hello() {
printf("Hello, my pid is: %d\n", _pid);

}
init {

int lastpid;
printf("init, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

During execution, we now get four processes: two copies of Hello due to the active keyword, the
init process, and the copy of Hello created by the init process. The output of spin -p hello-N.pml

is as follows:

0: proc - (:root:) creates proc 0 (Hello)
0: proc - (:root:) creates proc 1 (Hello)
0: proc - (:root:) creates proc 2 (:init:)

Hello, my pid is: 0
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1: proc 0 (Hello:1) hello-N.pml:2 (state 1) [printf(’Hello, my pid is: %d\\n
’,_pid)]

init, my pid is: 2
2: proc 2 (:init::1) hello-N.pml:6 (state 1) [printf(’init, my pid is: %d\\n

’,_pid)]
Hello, my pid is: 1

3: proc 1 (Hello:1) hello-N.pml:2 (state 1) [printf(’Hello, my pid is: %d\\n
’,_pid)]

Starting Hello with pid 3
4: proc 2 (:init::1) creates proc 3 (Hello)
4: proc 2 (:init::1) hello-N.pml:7 (state 2) [lastpid = run Hello()]

Hello, my pid is: 3
5: proc 3 (Hello:1) hello-N.pml:2 (state 1) [printf(’Hello, my pid is: %d\\n

’,_pid)]
last pid was: 3

6: proc 2 (:init::1) hello-N.pml:8 (state 3) [printf(’last pid was: %d\\n’,
lastpid)]

6: proc 3 (Hello:1) terminates
6: proc 2 (:init::1) terminates
6: proc 1 (Hello:1) terminates
6: proc 0 (Hello:1) terminates

4 processes created

10.1.3 Interleaving semantics

Processes in Promela execute concurrently, i.e., all active processes are allowed to take a step
from their current state. Individual statements are atomic, so each statement is executed without
any interleaving with other processes. Processes are scheduled non-deterministically, so we cannot
predict which process takes the next step. Processes are interleaved, so statements of different
processes do not occur at the same time. This means that at any time only one process takes
a step. The only exception to processes being interleaved is when synchronous communication
is used. We defer its discussion to Section 10.4, and for the time being we assume there is no
synchronous communication. When multiple possible actions are enabled at any point during
execution, then a choice is made non-deterministically.

Example 10.1.3. Consider the following Promela model.

active proctype P1() { byte t1; t1=1; t1=2; }
active proctype P2() { byte t2; t2=1; t2=2; }

These processes individually have the following semantics, described as a Kripke structure where
the transitions are labelled with the statements that are executed.

0

P1

1

2

t1 = 1

t1 = 2

0

P2

1

2

t2 = 1

t2 = 2

Since these processes do not synchronize, the execution is fully interleaved. The resulting
semantics is the following.
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(0, 0)

(1, 0)

(2, 0) (1, 1)

(0, 1)

(0, 2)

(2, 1) (1, 2)

(2, 2)

t1 = 1 t2 = 1

t1 = 1

t2 = 2

t1 = 1

t1 = 2 t2 = 1

t1 = 2

t2 = 2

t1 = 2

t2 = 1

t2 = 2

10.1.4 Variables and types

In the example in Section 10.1.1 we already saw that Promela models can contain integer vari-
ables. The basic types supported are bit, bool, which represents bits and Boolean values; byte,
which represents bytes, i.e. 8-bit values; short, which is a 16 bit signed integer; int, which
represents a 32-bit signed integer. They can be used, e.g., as in the following.

bit turn=1; /* 0..1 */
bool flag; /* false, true (or 0..1) */
byte counter; /* 8-bits per byte, so 0..2ˆ8 (=255) */
short s; /* -(2ˆ16)-1 .. (2ˆ16)-1 */
int msg; /* -(2ˆ32)-1 .. (2ˆ32)-1 */

The type pid is used to keep track of the identifiers of processes; this is, effectively, an alias for
the byte type.

More complicated types that can be used are arrays and records (that are similar to structs in
C). Examples of those are the following:

byte a[27]; /* Byte-array of length 27 */
bit b[4]; /* Bit-array of length 4 */
typedef Record { /* Record is a type with two fields, f1 and f2 */

short f1;
byte f2;

}
Record rr; /* rr is a variable of type Record */
rr.f1 = .. /* We can assign to the individual fields */

Message types, declared using mtype, are used to model enumerations. For example, mtype =

{left, right} is an enumeration with two values, left and right. Its use is similar to an enum

in C. Internally, each value will also be associated with an integer in the range 1..255; value 0

is reserved for uninitialized mtype variables. Multiple mtypes can be used in a single model, by
adding the name of the type as follows.

mtype:fruit = {apple, pear};
mtype:size = {small, medium, large};

To use variables, they should be declared. Variables can get a value in different ways. They
can either be assigned a value, they can be given a value through argument passing, or they can
get a value through message passing, see Section 10.4.

Consider the following fragment. Here we declare two variables, ii and bb, and subsequently
assign a value.

/* We declare two variables, and subsequently assign values */
int ii;
bit bb;
bb = 1;
ii = 2;
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What is the value of these variables after declaration? The default initial value of basic variables is
0. So, after both declarations, but before the assignments, variables ii and bb both have value 0.
In terms of verification times, later, this is not efficient, as it unnecessarily introduces additional
states. It is therefore more efficient to assign an initial value at the time of declaration if possible.
An example of this is the following.

/* Declaration and assignment, avoiding introduction of intermediate state */
short s=-1;

Variables can be used in expressions. Most arithmetic, relational and logical operators sup-
ported by C are also supported in Promela. Consider the following example.

Record rr;
rr.f1 = 0;
rr.f2 = 2;
rr.f2*s+27 == 23; /* Test with arithmetic expression as left-hand side */
printf("value: %d\n", rr.f2*rr.f2); /* Print value of numeric expression */

Using #define, macros can be defined (that can be used similar to macros in, e.g., C). This is
useful, for instance, if you want to define a constant on which your model depends, or a predicate.

Example 10.1.4. Suppose we want to parameterize our model with a value N that determines,
e.g., the size of an array. We can then write the following.

#define N 3

Now, we can use the generic value N instead of 3 in our model, and we only need to change the
value in one place if we want tot try the model for larger instances.

If we want to model a predicate, for instance, we want to model a predicate that is true if its
argument is equal to 42, than we can also use macros.

#define ISGOOD(x) (x == 42)

We can similarly write macros with multiple parameters.

#define ISBETWEEN(x, low, high) \
( (x > low) && \

(x < high) )

This last example defines a predicate ISBETWEEN that determines whether x is in the open interval
(low, high). Note that we here use \ at the end of the line to denote the continuation of the line.

Macros are simply expanded using the preprocessor at the places in the model where they are
used.

Exercise 10.1 In Exercise 9.2 we modelled the game of tic-tac-toe as a Kripke structure. Now,
suppose that we, instead, want to model it using Promela. In this exercise we define some of the
data types needed to model this game.

1. Define a data type that is able to capture whether a position on the grid is covered by ×,
#, or no player.

2. For the grid, define a global array grid, which initially represents the empty grid. You may
assume that the layout of the grid is as follows:

6 7 8
3 4 5
0 1 2

3. Define a macro WINS(grid, p) that is true if and only if grid is in a configuration that is
won by player p.

4. The game ends in a draw if the entire grid is covered, but neither of the players wins. Define
a macro DRAW(grid) that encodes that the game ends in a draw.
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Note that Promela does not allow the straightforward definition of multi-dimensional arrays.
Where, e.g., in C you could define an integer matrix with N rows and M columns using a two
dimensional array as int matrix[N][M]; this notation is not supported by Promela. However,
we can work around this using a trick. We first define a type for the rows.

typedef rows {
int row[M];

};

So, basically rows now is a record with as only field an array row of length M, indicating each of
the values on this row. We can now use this to define the matrix itself.

rows matrix[N];

Hence, matrix is now an array containing N rows.
We can now access an element at row i column j using the following notation:

matrix[i].row[j];

Exercise 10.2 Reconsider the grid of the tic-tac-toe game. Suppose we have positions (i, j) with
i the row, and j the column as follows.

(2,0) (2,1) (2,2)
(1,0) (1,1) (1,2)
(0,0) (0,1) (0,2)

Define the grid using a two-dimensional array of which the indices correspond to the positions
shown above. Initialize the grid to be empty.

10.1.5 Statements

The body of a process consists of a sequence of statements. Each statement is either executable,
which means the statement can be executed immediately, or it is blocked, which means the state-
ment cannot be executed. The executability of a statement depends on the global state of the
system.

Some statements are always executable. Examples of this are print statements, assignments,
skip, assert, and break. Others are not always executable. In particular, the run statement is
executable if a new process can be created; the number of processes is bounded (by 255), so if the
bound is reached, no new process can be started. A timeout can only be executed if there are no
other executable processes. An expression (which is used as a test) is executable if and only if it
evaluates to true (i.e. a non-zero value). So, for example, 2 < 3 is executable, x < 27 is executable
if the value of x is smaller than 27, otherwise it blocks, and 3 + x is executable if x is not equal to
-3, if it is equal to -3 it blocks because the expression evaluates to 0.

Example 10.1.5. Using blocking expressions we can very compactly model things such as busy-
waiting. Consider the following loop in C-code: while (a != b)skip; This can be modelled in
Promela using just the expression a == b;.

Conditionals

To model more complicated processes, we can use conditionals and loops in Promela. Condi-
tionals are modelled using an if-statement of the following structure:

if
:: c_0 -> s_0_1; s_0_2; ...
:: c_1 -> s_1_1; s_1_2; ...
:: ...
:: c_n -> s_n_1; s_n_2; ...
:: else -> s_e_1; s_e_2; ...
fi
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Here the c_i are conditions. The else becomes executable if none of the other guards are exe-
cutable. The operator -> is equivalent to ;, but is used to clearly separated guards from subsequent
statements. The sequence of statements s_i_1; s_i_2; ... is only executed if c_i is executable.
If there is at least one c_i that is executable, the if-statement is executable, and Spin non-
deterministically chooses one of the executable c_i and executes the corresponding sequence of
statements.

Example 10.1.6. We can use this pattern to give variable n a random value in the range [0, 3] as
follows.

if
:: n=0;
:: n=1;
:: n=2;
:: n=3;
fi

Loops

In a similar way, repetition can be modelled using the do-statement.

do
:: c_0 -> s_0_1; s_0_2; ...
:: c_1 -> s_1_1; s_1_2; ...
:: ...
:: c_n -> s_n_1; s_n_2; ...
do

With respect to the conditions, a do-statement behaves like an if-statement. However, instead
of ending the statement at the end of the chosen option, the do-statement repeats the choice
selection. To exit from the loop, the break statement can be used. This transfers control to the
end of the do-statement.

Example 10.1.7. We can now model a simple process of a traffic light.

mtype = {RED, YELLOW, GREEN};

active proctype TrafficLight() {
mtype state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

The color of the light is modelled using the mtype. The light starts by showing green, and
it then cycles through the colors, without ever terminating. Note that the do-statement in this
example does not introduce non-determinism.

Exercise 10.3 In Exercise 10.1 we defined the grid for the game of tic-tac-toe using a global
variable. The core of the behaviour of a player in the game is that it repeatedly puts a token on
an empty position in the grid.

Model a process PlayerX in Promela that repeatedly puts the token for player × on an empty
position in the grid.

Atomic execution

As we observed before, statements in different processes are executed in an interleaved way. Some-
times, however, we want to execute multiple statements as an indivisible block of actions. In
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Promela this is facilitated by the atomic keyword. All statements inside an atomic block are
executed without being interrupted by statements from other processes.5

Example 10.1.8. Consider the following excerpt, which assumes a previous declaration of integer
variables x and y.

atomic {
int tmp = x;
x = y;
y = tmp;

}

This fragment swaps the values of variables x and y in way that cannot be interrupted by other
statements.

Note that the atomic construct is often used to initialize groups of processes, ensuring that the
execution of all process begins simultaneously.

Example 10.1.9. Consider the following Promela fragement.

proctype P(byte id) {
...

}

init {
byte proc;
atomic {

proc = 0;
do
:: proc < N ->

run P(proc);
proc++;

:: proc == N -> break;
od;

}
}

This fragment declares a process P with parameter id. In the initialization, N copies of this
process are created, and each process is passed a unique identifier. The initialization is performed
atomically.

10.2 Example: Peterson’s mutual exclusion algorithm

Now that we have seen the basic syntax of Promela we show how it can be used to model a
realistic example.x Mutual exclusion is the problem where multiple processes require access to
shared resource in such a way that only one of the processes has access to the shared resource at
any time. The access to the shared resource happens in a so-called cricital section. To this end,
mutual exclusion algorithms execute in cycles, where, at the beginning of the cycle, a process can
indicate it wants to access its critical section. The task of the mutual exclusion algorithm is to
guarantee that at most one process is in its critical section at any time.

Peterson’s algorithm Peterson is a classic algorithm for a shared memory systems that imple-
ments mutual exclusion between two processes. As global (shared) variables it uses a Boolean
array flag[2], where, whenever flag[i] is true, process i wants to enter its critical section. It
also uses an integer variable turn, which is used for tie-breaking to ensure that one of the processes
is allowed to enter its critical section, when both processes have indicated they want to access the
critical section. Initially flag[0] = flag[1] = false and turn = 0.

The two processes, with id 0 and 1, are symmetric. We here give the code for process i.

5There is one exception to this: if a statement in an atomic block is blocked, atomicity is lost and other
processes can execute statements.
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flag[i] := true;
turn := 1-i;
while (flag[1-1] && turn == 1-i) do
{

/* busy waiting */
}
/* Critical section */
flag[i] := false;

Note that this code is repeated in a (non-terminating) loop, so that each process can repeatedly
request access to its critical section. Using 1-i in the algorithm, we indicate the id of the other
process.

We can translate this process directly to a small Promela model, using the pid type to keep
track of the turn.

/* Peterson’s mutual exclusion algorithm for 2 processes. */

/* shared variables */
bool flag[2];
pid turn;

active [2] proctype P() /* two processes; */
{

/* Since we only have two processes, and we do not have the separate
init process the _pid values of these processes are 0 and 1. */

pid i = _pid;
do :: true ->

flag[i] = true;
turn = 1-i
do

:: (flag[1-i] && (turn == 1-i)) -> skip; /* continue looping */
:: else -> break; /* stop the loop */

od;
skip; /* Here the critical section is executed */
flag[i] = false;

od;
}

Note that if you run a random simulation of this model, the simulation does not terminate. This
is because each of the processes contains an infinite loop. You can still run a random simulation,
and manually abort it after a while. In the next section we will see how, alternatively, Spin can
be used to generate the entire state space of the process, and check properties exhaustively.

10.3 Verifying system properties using assertions

Spin is a model checking tool. Model checking tools automatically verify whether the Kripke
structure underlying a model satisfies a property φ. Spin supports checking the following types
of properties: deadlocks (or bad endstates), this is the default when verifying models; assertions
which can be used to check whether properties hold at a particular place in the model; unreachable
code; and linear temporal logic (LTL) properties. In this chapter, we focus on the first three types of
properties. Linear temporal logic, and verification of such properties using Spin, will be discussed
in Chapter 11.

In general, we distinguish two kinds of properties. Safety properties and liveness properties.
Intuitively, a safety property expresses that “nothing bad ever happens”. Examples of safety
properties are:

• The value of x is always less than 42 (this is an invariant).
• The car never crashes.
• The system never deadlocks.
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When a model satisfies a safety property, the tool will report this. Otherwise, Spin will find a trace
to the “bad thing”, i.e. a state violating the property. Safety properties can often be expressed in
Spinby adding assertions.

Liveness properties express that “something good will eventually happen”. Examples of such
properties are:

• The system eventually terminates.
• If X occurs then eventually Y occurs.

Liveness properties can typically not be expressed using assertions, and require us to use LTL. In
this chapter we therefore focus on safety properties.

10.3.1 Checking for deadlocks

A deadlock is a state in the system in which no further steps are possible. Recall the Alpha process
from Section 10.1.1. We observed during simulation that a timeout appears, but, in fact, the state
that we identified based on the simulation is a deadlock.

In Spin deadlock states are referred to as invalid end-states. The only valid end-states are
those states at the closing curly brace ({) of a proctype declaration. Addionally, if it is by design
that a process can terminate earlier in the process, we can explicitly mark this by adding an end:

label at the place where we want to allow termination. This will mark the given state as a valid
end state.

Now, let us see how we can use the exhausive verification performed by Spin to identify the
deadlock state in the Alpha process. If we want to perform exhaustive verification using Spin, we
need to perform two steps. First, we need to generate a protocol specific analyzer, and subsequently
we need to run the verification. We next describe both steps.

Generating protocol specific analyzer

A protocol specific analyzer is a set of C files that must be compiled in order to generate an
executable for the analyzer. An analyzer can be generated for a particular Promela model by
executing spin -a on the model.

Example 10.3.1. Recall the model in alpha.pml described in Section 10.1.1. We can generate the
protocol specific analyzer as follows.

spin -a alpha.pml

Executing this generated the following files:

pan.b
pan.c
pan.h
pan.m
pan.t

The key files to note here are pan.c and pan.h, that can be compiled using the C compiler.

We next compile a verifier by building these C files using the compiler. Here we assume that
the GCC compiler is installed. Compilation can be done using the following command:

gcc -DNOREDUCE -o pan pan.c

Here, gcc is the name of the compiler that is used, -DNOREDUCE indicates that the verifier that
is generated should not use partial order reduction. Finally, -o pan pan.c indicates that the
executable that is generated is calles pan, and that the file that we should compile is pan.c.

If we are sure we only want to perform verification of safety properties, i.e., no cycle detection
is needed during the verification process, we can optimize for this by compiling pan using the
-DSAFETY flag. Whenever we are only checking for deadlocks or verifying assertions, this flag is
safe to use.
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Running the verification

Once the protocol specific analyzer has been generated and compiled, we can perform the corre-
sponding verification by executing pan as follows.

./pan

If we assume the analyzer was generated following the example in the previous section, this com-
mand outputs the following.

pan:1: invalid end state (at depth 1)
pan: wrote alpha.pml.trail

(Spin Version 6.5.2 -- 6 December 2019)
Warning: Search not completed

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 32 byte, depth reached 2, errors: 1
3 states, stored
0 states, matched
3 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.000 equivalent memory usage for states (stored*(State-vector + overhead))
0.292 actual memory usage for states
128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)
128.653 total actual memory usage

pan: elapsed time 0 seconds

In particular, on the first two lines, there is an indication that an invalid end-state was reached,
and that a trail file was written. Besides that, the output warns that the search was not completed:
because an error was detected, the tool reported the error, and stopped the verification. Further-
more, the options that were used and the time and memory that were required are reported. From
the output we see that we checked for assertion violations and invalid end states, and other checks
were not performed.

Trail hunting

In the previous section we observed that, when verification fails, a trail file is written. Such a trail
file is very useful to get additional information from the model, in order to understand the cause
of the failure. If a trail file has been written for spec.pml, we can print information from it using

spin -t spec.pml

Furthermore, the same options -p, -g, and -l that were discussed for random simulation can be
used to change the information that is printed.

Example 10.3.2. Reconsider the deadlock detected for the Alpha process, corresponding to alpha

.pml. We can print the counterexample as follows.

spin -t -p -l alpha.pml

It produces the following output:
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Starting Alpha with pid 1
1: proc 0 (:init::1) alpha.pml:10 (state 1) [(run Alpha(5,3))]
2: proc 1 (Alpha:1) alpha.pml:3 (state 1) [(1)]
2: proc 1 (Alpha:1) alpha.pml:4 (state 2) [x = 2]

Alpha(1):x = 2
spin: trail ends after 2 steps
#processes: 2
2: proc 1 (Alpha:1) alpha.pml:5 (state 3)

Alpha(1):z = 1
Alpha(1):y = 3
Alpha(1):x = 2

2: proc 0 (:init::1) alpha.pml:11 (state 2) <valid end state>
2 processes created

The output indicates the trail ends after 2 steps. The last step on this trail (labelled 2:) is where
Alpha has performed x = 2, and at the end of the trail, the values of the local variables are z =

1, y = 3, x = 2. From this we can immediately see that the next statement in Alpha, which is a
boolean expression, evaluates to false.

In the case of this example, the trail actually contains the shortest path to a counterexample.
However, in general this is not guaranteed by the verifier. If during debugging your model using
a counterexample, you find that the counterexample is long, in some cases, it helps to search for
a shorter counterexample. This can be achieved by executing pan with the -i option.

Exercise 10.4 Use the verifier in Spin to show that the model of Peterson’s mutual exclusion
algorithm from Section 10.2 is deadlock free.

Exercise 10.5 Instead of explicitly modelling Peterson’s using a busy-waiting loop, we can also
rely on the fact that processes block on a boolean expression as long as the expression evaluates
to false. The resulting model is the following:

/* Peterson’s mutual exclusion algorithm for 2 processes. */

/* shared variables */
bool flag[2];
pid turn;

active [2] proctype P() /* two processes; */
{

/* Since we only have two processes, and we do not have the separate
init process the _pid values of these processes are 0 and 1. */

pid i = _pid;
do :: true ->

flag[i] = true;
turn = 1-i
!(flag[1-i] && (turn == 1-i)); /* Block until guard of busy-wait loop is

false */
flag[i] = false;

od;
}

Use the verifier in Spin to show that this alternative model is also deadlock free.

Exercise 10.6 Consider the following attempt at giving a mutual exclusion algorithm, still for
two processes, that does not use the turn variable, other than that the variables and initialization
are the same as in Peterson’s algorithm.

flag[i] := true;
while (flag[1-1]) do
{

/* busy waiting */
}
/* Critical section */
flag[i] := false;
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1. Create a Promela model for this mutual exclusion algorithm for two processes, using the
trick from Exercise 10.5 to model the busy-waiting loop.

2. Use Spin to show that the resulting model has a deadlock.

3. Using the counterexample, explain the deadlock.

10.3.2 Checking safety properties

Safety properties can be checked for a Promela model by adding assertions to the model. These
assertions, like in programming, are boolean expressions about local and global variables that
should hold at the place where they are evaluated.

Example 10.3.3. Recall the model of Peterson’s mutual exclusion algorithm from Section 10.2. To
check mutual exclusion, we add an additional global variable that is incremented when a process
enters its critical section, and decremented when a process leaves its critical section. In the critical
section, we then assert that the number of process in the critical section is exactly 1. If mutual
exclusion does not hold, the assertion will be violated, as there is some state in the model where
both processes have incremented this global variable, neither of the process have decremented it.
We have also added an explicit check on our assumption of the value of _pid.

The process that results is the following:

/* Peterson’s mutual exclusion algorithm for 2 processes. */

/* shared variables */
bool flag[2];
pid turn;
byte ncrit;

active [2] proctype P() /* two processes; */
{

/* Since we only have two processes, and we do not have the separate
init process the _pid values of these processes are 0 and 1. */

assert((_pid == 0) || (_pid == 1))
pid i = _pid;
do :: true ->

flag[i] = true;
turn = 1-i
do

:: (flag[1-i] && (turn == 1-i)) -> skip; /* continue looping */
:: else -> break; /* stop the loop */

od;
ncrit++;
assert(ncrit == 1) /* Here the critical section is executed */
ncrit--;
flag[i] = false;

od;
}

Verification can be done as before using:

spin -a peterson-assert.pml
gcc -DSAFETY -DNOREDUCE -o pan pan.c
./pan

This reports no errors, hence mutual exclusion is satisfied.

Exercise 10.7 Consider the following attempts at a mutual exclusion algorithm, that is similar
to the version in Exercise 10.6, but in which the flag is set only after the process has determined
that the other process has not set its flag.

while (flag[1-1]) do
{

/* busy waiting */
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}
flag[i] := true;
/* Critical section */
flag[i] := false;

1. Create a Promela model for this mutual exclusion algorithm for two processes. You can
choose whether to model busy-waiting using a loop, or using the trick from Exercise 10.5.
Include a counter and an assertion to determine whether mutual exclusion is violated.

2. Use Spin to show that the resulting model violates mutual exclusion.

3. Using the counterexample, explain the deadlock.

10.4 Communication

So far we have focused on shared memory processes. If we want to model distributed systems
that, e.g., communicate via the network, we need no explicitly model communication channels,
and the communication that happens along these channels.

Communication via channels is supported in Promela. Communication can be either syn-
chronous (also referred to as rendezvous communication) or asynchronous (message passing). Both
types of communication are modelled in a similar way.

chan <name> = [<dim>] of {<type1>, <type2>, .., <typen>};

where

• <name> is the name of the channel.
• <dim> is the capacity of the channel, i.e., the number of messages that can be contained in
the channel. If <dim> is 0, the channel is synchronous.

• {<type1>, <type2>, .., <typen>} is the type of the messages contained in the channel.

Channels essentially operate in a FIFO (first-in-first-out) manner, meaning that the message
that was first inserted into the channel by the sender also needs to be consumed from the channel
first by the receiver. In case the channel dimension is 0, no message can be stored in the channel,
and sending and receiving need to happen simultaneously.

Example 10.4.1. Consider the following declarations.

mtype { MSG, ACK };
chan c = [0] of {bit};
chan toR = [2] of {mtype, bit};
chan line[2] = [1] of {mtype, Record};

We have a message type, denoted using mtype consisting of elements MSG and ACK, for message and
acknowledgement. Channel c is a synchronous channel to exchange bits; toR is an asynchronous
channel of dimension 2 along which messages of the form mtype, bit can be exchanged. Finally,
line is an array of channels of capacity 1.

Note that in the example we have shown that, if we want to use multiple channels of the same
type, we can use an array of channels. This can, e.g., be used to compactly model the situation
where every process has its own incoming channel, indexed with the identifier of the process.

Promela’s syntax distinguishes between sending and receiving messages. Sending a message
really means putting a message in a channel buffer (for dim > 0), and is written as ch!<expr1

>,<expr2>,...,<exprn>;, where ch is the channel along which the message is sent. The <expri>

are the values that are sent. Their type must correspond to the types of the channel declaration.
A send statement is executable if the channel buffer is not full. If the channel buffer is full, the
statement blocks.

Example 10.4.2. In the following fragment, we use the declarations from the previous example.
We first send message 1 on channel c, then 0 along toR. Finally, we send a record m, with values 5
and 10 for the fields along the first line channel. (Recall that we have an array of channels line.)
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c!1;
toR!ACK, 0;
Record m;
m.f1=5;
m.f2=10;
line[1]!MSG, m;

Receiving messages from a channel buffer is done in a similar way. The basic way of receiving
messages using message passing is ch?<var1>,<var2>,...,<varn>;, where, if the channel buffer is
not empty, the first message is read from the channel, the values are stored in the <vari> variables
and the message is removed from the channel. Instead of accepting messages containing any value,
can use the pattern ch?<const1>,<const2>,...,<constn>; to only accept the message if the first
message in the channel matches als the <consti> conditions, i.e., the values of the first message
in the channel are equal to the constants. We call this message testing. Now, to be of use, <var>
and <const> entries can be mixed.

Example 10.4.3. In the following fragment, a bit is received from channel c and stored to b, and
along line[1] we receive a message provided that the first element is MSG; the record in the second
element is stored to m.

bit b;
c?b;
Record m;
line[1]?MSG,m;

Note that, when receiving from channel line[1], if the message is of the form ACK,m, receiving on
the last line will not succeed, as ACK does not match MSG.

Instead of testing whether an element of a message is equal to a constant, we can also compare
with the current value of a particular variable. To this end, eval(x) represents the constant with
value equal to x.

Example 10.4.4. In the following fragment, we only receive a message provided the first element
is MSG, the current value of variable g.

mtype g = MSG;
Record m;
line[1]?eval(g),m;

When doing rendez-vous (synchronous) communication, i.e. the dimension of a channel is 0,
the channel cannot store messages. So, if one process wants to execute a send statement ch!

and simultaneously another process wants to execute a corresponding receive statement ch? with
matching constants, then both statements are executable. Both statements will handshake, and
together result in a transition of the system.

Example 10.4.5. Consider the following model.

chan ch = [0] of {bit, byte};

active proctype P {
ch!1,3+7;

}

active proctype Q {
byte x;
ch?1,x;

}

In this, P wants to do ch!1,3+7, and Q wants to do ch?1,x, so P and Q can synchronize. After doing
so, x will have value 10.
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Exercise 10.8 In Exercises 10.1 and 10.3 we developed the basics of a model of a tic-tac-toe
game. However, so far, we only modelled an independent player, and did not yet model the turns
that players take.

1. Define a message type mtype:message that can be used to indicate the beginning and end
of a turn.

2. Using this message type, declare two synchronous channels, one for each player, that are
used to indicate the beginning and end of the turn of these players.

3. Use these channels to extend the process of player × you defined in Exercise 10.3 such that
the player only places a token on the grid after it has got the turn, and after putting a
token on the grid, it ends the turn.

4. Extend your model with the process for player #.

5. Finally, we have to model the game itself. For this, model a process Game that keeps track
of the turn and the winner (if one of the players has already won). This process passes the
turn to each of the player in an alternating fashion, and each time checks whether a player
has won the game already.

Exercise 10.9 Reconsider the tic-tac-toe model that you constructed in previous exercises. The
game terminates when the loop of the Game process terminates.

1. First check whether this model contains deadlocks. If you get an error message, can you
explain why you get an error message? Resolve the error.

2. In the updated model, verify using an assertion whether, when the game terminates, we
have a winner.

3. If you find that the previous property does not hold, think about how the assertion should
be changed to obtain a property that does hold when the game terminates.

So far we have only been interested in the values of local and global variables in counterexam-
ples. When dealing with channels, there are some additional options that can be passed to spin
during random simulation, and when printing counterexamples:

• -r shows all message receive events,
• -s shows all message send events.

Furthermore, when debugging communicating processes, it can be useful to print the trace in the
form of a (textual version of a) sequence diagram. This can be achieved using the option -c.

10.5 Alternating Bit Protocol

We now switch our attention to modelling a real communication protocol in Promela. Consider
the situation where a sender process S and a receiver process R want to reliably exchange messages
along unreliable channels. That is, there are lossy channels toR and toS. Now the question is, how
can we ensure that a message sent by the sender is received by the receiver. A standard solution
to this problem is to add a bit to every message sent by the sender. The receiver acknowledges
a message by sending back the received bit. If the sender is certain that the receiver correctly
received the previous message, it sends a new message, in which it flips the bit, otherwise it resends
the previous message. This standard solution is typically referred to as the alternating bit protocol.

10.5.1 Reliable channels

Let us first assume that the channels are reliable, so no messages are lost. The sender and receiver
processes can be modelled in Promela using the model shown in Listing 1.

In this model, we see the following. First, we have two types of messages, an actual message,
denoted MSG, and an acknowledgement, denoted ACK. We have two channels that can each contain
N messages. The sender outputs sendbit along its output channel, and subsequently receives an
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#define N 2 /* dimension of channels */

mtype = { MSG, ACK };
chan toR = [N] of { mtype, bit }; /* Channel from S to R */
chan toS = [N] of { mtype, bit }; /* Channel from R to S */

proctype Sender(chan in,out) {
bit sendbit; /* alternation bit transmitted */
bit recvbit; /* alternation bit received */

do
:: out ! MSG(sendbit) -> /* Send current message */

in ? ACK(recvbit); /* Await response */
if
:: recvbit == sendbit -> /* Successful transmission */

sendbit = 1-sendbit; /* Toggle bit */
:: else -> skip; /* Transmission error, don’t get new msg */
fi;

od;
}

proctype Receiver(chan in,out) {
bit recvbit; /* alternation bit received */
do
:: in ? MSG(recvbit) -> /* Message received successfully */

out ! ACK(recvbit); /* Send acknowledgement with received bit */
od;

}

init {
run Sender(toS, toR);
run Receiver(toR, toS);

}

Listing 1: Alternating Bit Protocol with reliable channels.
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acknowledgement on its input channel. It subsequently checks if the acknowledgement contains
the bit that was just sent. If so, the message was transferred correctly, and we send a message
with a new bit; if not, we resend the message that was sent previously.

The receiver operates in a similar way. It receives a message along its input channel, and sends
the same bit as acknowledgement.

Note that this model introduces a bit of new notation as well: we can parameterize processes
with channels, so that we can more conveniently refer to them with their local names. For instance,
toS is an outgoing channel for R, and an incoming channel for S. Furthermore, we can use #define

to give a name to an expression, this is basically just a macro that is substituted at all places
where it appears. Finally, instead of writing out ! MSG, sendbit, we write out ! MSG(sendbit).
Whenever the first argument of a channel represents the message type, this tends to be more
readable.

10.5.2 Message content

In the previous model, the message only contains the bit, but no content. We extend the model
such that a message also contains a value. For convenience, we let the sender send numbers modulo
8, so it first sends 0, then 1, etc, until it sends 7. It then wraps back to 0. We need to calculate
this next value, and extend the sender and receiver processes to deal with it. The new model is
shown in Listing 2.

#define N 2 /* dimension of channels */
#define MAX 8 /* MAX value to send */

mtype = { MSG, ACK };
chan toR = [N] of { mtype, byte, bit }; /* Channel from S to R */
chan toS = [N] of { mtype, bit }; /* Channel from R to S */

proctype Sender(chan in,out) {
bit sendbit; /* alternation bit transmitted */
bit recvbit; /* alternation bit received */
byte m; /* message data */

do
:: out ! MSG(m,sendbit) -> /* Send current message */

in ? ACK(recvbit); /* Await response */
if
:: recvbit == sendbit -> /* Successful transmission */

sendbit = 1-sendbit; /* Toggle bit */
m = (m+1)%MAX /* Get new message */

:: else -> skip; /* Transmission error, don’t get new msg */
fi;

od;
}

proctype Receiver(chan in,out) {
byte m; /* message data received */
bit recvbit; /* alternation bit received */
do
:: in ? MSG(m, recvbit) -> /* Message received successfully */

out ! ACK(recvbit); /* Send acknowledgement with received bit */
od;

}

init {
run Sender(toS, toR);
run Receiver(toR, toS);

}

Listing 2: Alternating Bit Protocol with reliable channels and data.



10.5. ALTERNATING BIT PROTOCOL 75

10.5.3 Unreliable channels

So far, we still did not deal with unreliability. To model an unreliable channel, we now, essentially,
split the channels, and introduce an intermediate process. Such an unreliable channel can receive
a message from the sender, and either forward it to the receiver, or send an error to the receiver
to indicate that the message was corrupted.

The unreliable channels used in the alternating bit protocol are shown in Listing 3.

proctype unreliable_channel_bit(chan in, out) {
bit b; /* Bit received from input */

do
:: in ? ACK(b) -> /* Receive ack along input channel */

if
::out ! ACK(b); /* Correct transmission */
::out ! ERROR(0); /* Corrupted */
fi

od
}

proctype unreliable_channel_data(chan in, out) {
byte d; /* Data received from input */
bit b; /* Bit received from input */

do
:: in ? MSG(d,b) -> /* Receive transmission along input channel */

if
::out ! MSG(d,b); /* Correct transmission */
::out ! ERROR(0,0); /* Corrupted */
fi

od
}

Listing 3: Unreliable channels for the alternating bit protocol.

These channels can now be used in the alternating bit protocol. Note that we also change
the initialization, and extend the sender and receiver processes to deal with errors that occur. In
particular, if the sender receives an ERROR, it will resend the previous message. If it receives an
acknowledgement, it will use the bit in the acknowledgement to determine if it needs to resend
the previous message or not. If not, it will determine the next message. To get a more concise
model, we have unrolled the loop in the sender one step, so the first message is sent outside the
loop, and inside the loop, a message is sent after receiving an acknowledgement.

Similarly, if the receiver receives an ERROR it sends an acknowledgement with the old bit. If it
receives a message with the same bit as the message that was last successfully received, it knows
it is dealing with a retransmission, and the message is ignored. If a message with a different bit
as the message that was last successfully received, the message is new, and it should be accepted.
The receive bit and the last received message are updated.

Note that, to fit the appropriate channel formats, the parameters of the error messages are
filled up with zeroes. In a random simulation this could be omitted, but verification will fail
because too few parameters are provided with the message.

In the model, we have added some aspects to the receiver that help in the verification and
debugging of the protocol. For instance, when a message is accepted, it is printed using printf.
Additionally, we store the last message that was accepted, so that we can test whether a new
message that is accepted is the correct one. To test this, we use the assert statement.

Exercise 10.10 Consider the model of the alternating bit protocol as we have constructed it in
this section. Observe that the model has an assertion that checks that we only accept the correct
messages.
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#define N 2 /* dimension of channels */
#define MAX 2 /* Send integers modulo MAX */

mtype = { MSG, ACK, ERROR };

chan fromS = [N] of { mtype, byte, bit }; /* From S to unreliable channel */
chan toR = [N] of { mtype, byte, bit }; /* From unreliable channel to R */
chan fromR = [N] of { mtype, bit }; /* From R to unreliable channel */
chan toS = [N] of { mtype, bit }; /* From unreliable channel to s */

proctype Sender(chan in,out) {
bit sendbit; /* alternation bit transmitted */
bit recvbit; /* alternation bit received */
byte m; /* message data */

out ! MSG(m,sendbit) -> /* Send current message */
do
:: in ? ACK(recvbit); /* Await response */

if
:: recvbit == sendbit -> /* Successful transmission */

sendbit = 1-sendbit; /* Toggle bit */
m = (m+1)%MAX /* Get new message */

:: else ->
skip /* Transmission error, don’t get new msg */

fi;
out ! MSG(m,sendbit) -> /* Send message (either old or new) */

:: in ? ERROR(recvbit) -> /* Receive error */
out ! MSG(m,sendbit) /* Send again */

od;
}

proctype Receiver(chan in,out) {
byte m; /* message data received */
byte last_m = MAX-1; /* data of last error-free message, for verification */
bit recvbit; /* alternation bit received */
bit last_recvbit = 0; /* receive bit of last error-free message */

do
:: in ? MSG(m, recvbit) -> /* Message received successfully */

out ! ACK(recvbit); /* Send acknowledgement with received
bit */

if
:: (recvbit == last_recvbit) -> /* bit is not alternating, old message */

skip /* don’t accept message */
:: (recvbit != last_recvbit) -> /* bit is alternating; accept message */

printf("ACCEPT %d\n", m);
assert(m == (last_m+1)%MAX); /* check that we accept only correct messages */
last_recvbit = recvbit; /* store alternating bit */
last_m = m /* store m */

fi
:: in ? ERROR(m, recvbit) -> /* Receive error */

out ! ACK(last_recvbit) /* Send ack with old bit */
fi

od
}

init {
run Sender(toS, fromS);
run Receiver(toR, fromR);
run unreliable_channel_bit(fromR, toS);
run unreliable_channel_data(fromS, toR);

}

Listing 4: Alternating Bit Protocol with unreliable channels and data.
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1. Use Spin to check that this version of the alternating bit protocol is deadlock free and
satisfies all assertions.

2. In the model of the Receiver, we initialize last_recvbit to 1. Change this to initialize to
0, and check safety of this version of the protocol again. What do you observe? Give an
explanation of the message you see.
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Chapter 11

Linear Temporal Logic (LTL)

In previous courses such as logic and set theory you have learned to formally reason using proposi-
tional and predicate logic. Such logics only allow you to reason about static properties. You could,
for instance, formally specify a sorting routine by relating its inputs to its post-condition. How-
ever, when reasoning about the behavior of system, it is often desirable to reason about (changes
in) the system during its execution.

In Chapter 10 we have seen how safety properties in Promela models can be formulated
using assertions, and checked using Spin. In this chapter, we instead formulate properties using
temporal logics. Temporal logics allow reasoning about propositions in terms of time, for instance,
“I am always studying”, “I will eventually graduate”, or “I will study until I graduate”.

There are many different temporal logics that are used to formally describe requirements, and
that allow (automatically) verifying whether a system described using LTSs or Kripke structures
satisfy the requirements. The most commonly used temporal logics are LTL, CTL, CTL∗ and the
modal mu-calculus. In this chapter, we introduce Linear Temporal Logic (LTL) to reason about
state properties of Kripke structures defined in Chapter 9. The other logics will be introduced in
other courses in the computer science bachelor or master’s programmes.

We base this chapter on standard textbook descriptions such as (Baier and Katoen, 2008,
Chapter 5).

At the end of this chapter, you

• can explain the syntax and semantics of LTL;
• can informally explain the meaning of LTL formulas;
• can translate requirements into LTL formulas;
• can determine whether a given Kripke structure satisfies a given LTL formula.
• can express LTL formulas in the explicit syntax used by Spin.
• can use Spin to verify whether a Promela model satisfies an LTL formula.

11.1 Syntax

We first describe the syntax according to which LTL formulas are constructed. LTL formulas are
constructed using atomic propositions, denoted a, standard Boolean connectives ¬, ∧ and ∨, and
the temporal modalities X (next), U (until), F (eventually), and G (globally/always).

Definition 11.1.1 (LTL syntax). Let AP be a set of atomic propositions. The set of LTL formulas
over AP is described using the following syntax:

φ ::= a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1 Uφ2 | Fφ | Gφ

One should read this definition as follows. The standard boolean connectives have their tradi-
tional meaning.

79
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• a is an atomic proposition,
• φ, φ1 and φ2 are LTL formulas,
• X denotes the “next” operator,
• U denotes the “until” operator,
• F denotes the “eventually” operator, and
• G denotes the “globally” operator.

Note that for instance the constants true and false can be obtained by taking an atomic proposition
a, and using a∧¬a for false, and a∨¬a for true. We also use the standard rules for propositional
logic, and write φ → ψ instead of ¬φ ∨ ψ, and φ ↔ ψ for (φ → ψ) ∧ (ψ → φ). Note that →
is implication and ↔ is bi-implication. We here use the single arrow → instead of the standard
double arrow =⇒ to clearly distinguish between the implication within the syntax of LTL, and
the implication when we are reasoning about LTL.

Operator precedence The unary operators bind stronger than the binary ones. Negation (¬)
and X, F and G bind equally strong. Temporal operator until (U) takes precedence over the boolean
connective (∧). Operator U is right associative, that is, φ1 Uφ2 Uφ3 stands for φ1 U (φ2 Uφ3).

So, for example formula F aU b should be read as (F a)U b, and X aU¬G b is (X a)U(¬(G b)).

11.2 Semantics of LTL

Ultimately, we want to establish what it means for an LTL property to hold for (the initial state
of) a Kripke structure. For the sake of simplicity of the definitions, in this chapter we assume that
Kripke structures have a total transition relation. We therefore do not have to deal with finite
paths in the definition of the semantics. The semantics of LTL follows a two step approach. The
property holds for a Kripke structure if it holds for its initial state. An LTL property holds for
a state in a Kripke structure if it holds for all infinite paths starting in that state. On the lower
level, therefore, the semantics of an LTL formula is defined on such paths. In this chapter, we
sometimes talk about paths instead of infinite paths, especially when it is clear from the context
that we mean infinite paths.

Definition 11.2.1 (Validity of an LTL formula over a path). Let (S, s0,→,AP , L) be a Kripke
structure, π an infinite path starting in some state in the Kripke structure. Validity of an LTL
formula over an infinite path, denoted π |= φ, is defined inductively as follows.

• π |= a if and only if a ∈ L(π[0]);
• π |= ¬φ if and only if π ̸|= φ;
• π |= φ ∧ ψ if and only if π |= φ and π |= ψ;
• π |= φ ∨ ψ if and only if π |= φ or π |= ψ;
• π |= Xφ if and only if π[1 . . .] |= φ;
• π |= φUψ if and only if ∃j ≥ 0.π[j . . .] |= ψ and for all 0 ≤ i < j, π[i . . .] |= φ;
• π |= Fφ if and only if ∃i ≥ 0.π[i . . .] |= φ; and
• π |= Gφ if and only if ∀i ≥ 0.π[i . . .] |= φ.

Figure 11.1 illustrates the intuition behind most of the LTL operators. The informal explana-
tion of the semantics is as follows.

Atomic Proposition An atomic proposition is true on an infinite path, if it holds on the first
state of the path. In the top line of Figure 11.1, proposition a holds at the first position, so
it holds for that path.

Negation of a formula The negation of an LTL formula holds on an infinite path π if and only
if the atomic proposition does not hold on that same path.

Conjunction Given two LTL formulas φ and ψ, the conjunction holds on an infinite path π if
and only if both formulas hold on the path.
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Disjuction Given two LTL formulas φ and ψ, the disjunction holds on an infinite path π if and
only if at least one of the formulas holds on the path.

Next The next operator is used to specify that a formula holds at the next position on an infinite
path. Given proposition a, formula X a holds on an infinite path if it holds at the next
state, that is, state at position 1 on the path. At the top of Figure 11.1, X¬a holds as
a ̸∈ L(π[1 . . .]). In the second line in the figure, you can see a path where X a holds.

Until The until operator specifies that a formula is true until another one is true. There are
two parts in the definition of φUψ: (1) formula ψ must hold at some position on the path;
and (2) at all previous positions, formula φ must hold. It is important to notice that φUψ
enforces ψ to hold but it does not enforce φ to be true. If ψ holds at all positions, φUψ also
holds. In the third row in Figure 11.1, we see an example where the property aU b holds; a
holds in the first two states on the path, whereas b does not hold at those states, but b dus
hold in the third state.

Eventually Intuitively (see the fourth row in Figure 11.1) Fφ means that φ must hold somewhere
in the future. This operator is sometimes denoted ⋄.

Globally This is the dual of the eventually operator. Intuitively (see the last line in Figure 11.1),

Gφ means that φ always holds. This operator is sometimes denoted 2.

a
a

· · ·

X a
a

· · ·

aU b
a ∧ ¬b a ∧ ¬b b

· · ·

F a
¬a ¬a ¬a a

· · ·

G a
a a a a a

· · ·

Figure 11.1: Intuition for the main LTL operators, based on (Baier and Katoen, 2008, Figure 5.1).

So far, we have only discussed the semantics of LTL formulas over infinite paths. However,
as pointed out at the beginning of this section, we are interested in whether the Kripke structure
satisfies an LTL formula. An LTL formula φ is valid in state s, denoted s |= φ if and only if φ
holds for all infinite paths starting in s. Formally, this is defined as follows.

Definition 11.2.2 (Validity of an LTL formula). LetK = (S, s0,→,AP , L) be a Kripke structure,
and s ∈ S.

s |= φ if and only if ∀π ∈ pathsω(s).π |= φ

An LTL formula φ is valid for Kripke structure K if and only φ holds in the initial state of K.
Formally,

K |= φ if and only if s0 |= φ

Example 11.2.1. Let’s have a look at an example. Consider the model of a simple beverage vending
machine in Figure 11.2. On this machine, we can express the following requirement:

If one coin has been inserted and the start button has been pressed, the system shall
eventually serve tea.
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s0

s1

{1coin}
s2

{1coin,
started}

s4

{2coins}
s3

{1coin,
servingTea}

s5

{2coins,
started}

s6

{2coins,
servingCoffee}

Figure 11.2: A beverage vending machine.

This requirement states that if one coin has been inserted and the start button has been
pressed, users should get tea. It also states that users should get tea when one coin has been
inserted and the start button has been pressed.

To express this formula, we defined (among others) the following atomic propositions:

• 1coin is true if and only if one coin has been inserted. Coins are consumed after a beverage
has been produced.

• started is true if and only if the start button has been pressed. This proposition is reset
when the machine starts producing a beverage.

• servingTea is true if and only if the system is about to serve tea.

We can then formalize our requirement as follows:

G ((1coin ∧ started) → F servingTea)

Exercise 11.1 The coffee machine in Figure 11.2 contains the following additional atomic propo-
sitions:

• 2coins is true if and only if two coins have been inserted. Coins are consumed after a
beverage has been produced.

• servingCoffee is true if and only if the system is about to serve coffee.

Express the following properties as LTL formulas:

1. Eventually, a coin can be inserted into the system.

2. The system infinitely often serves tea.

3. The system infinitely often serves a beverage.

4. Whenever two coins are inserted into the system, the are not consumed before the machine
serves coffee.

5. Whenever one coin is inserted into the system, coins are not consumed before the machine
serves a beverage.

Exercise 11.2 Assume a system – say a circuit – with one input bit i and one output bit o. We
assume atomic propositions AP = {o, i}. Atomic propositions i and o are true if and only if the
corresponding bit has value 1.

Write an LTL formula for each one of the following statements:

1. It is impossible that the system outputs two successive 1’s.

2. Whenever the input bit is 1, in at most two steps the output bit will be 1.

3. Whenever the input is 1, the output bit does not change in the next step.

4. The output infinitely often has the value 1.
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Exercise 11.3 Consider a traffic light. Write an LTL formula that formalizes the requirement
that whenever the light is green, it must remain green until it becomes yellow, and ultimately
becomes red.

s0

s1{trying0}

s2{in0} s3
{trying0,
trying1}

s4

{in0, trying1}

s5 {trying1}

s6 {in1}s7
{trying0,
trying1}

s8

{in1, trying0}

Figure 11.3: Kripke structure modelling mutual exclusion between two processes.

Example 11.2.2. Recall the example of a mutual exclusion protocol from Figure 9.2. We repeat
the Kripke structure in Figure 11.3.

We formalize a number of properties using LTL.

• The resource must be accessed under mutual exclusion, meaning that only one process can
access it at the same time.

G(¬(in0 ∧ in1))

Note that this property holds in the Kripke structure in Figure 11.3.
• Whenever process 0 is trying to enter its critical section, it will eventually be in its critical
section. This property is also called starvation freedom.

G(trying0 → F in0)

This property also holds in the Kripke structure in Figure 11.3.
• Whenever process 0 is trying to enter its critical section, process 1 may access its critical
section at most once, before process 0 is in its critical section. An attempt to formalize this
property is the following.

G(trying0 → (trying1 U(in1 U in0))

Let us take a closer look at this property. It is an invariant property due to the globally
operator. Now, when process 0 is trying to enter its critical section, it can be the case that
process 1 is also trying. If that is the case, trying1 holds until the property in1 U in0 holds.
We can now have two cases. Either process 0 is the first to enter the critical section, so in0

holds, the second until is true immediately (and at this point, process 1 is still trying). In
the other case, process 1 is the first to enter the critical section, so in1 becomes true, and
to validate the property, in1 must remain true until process 0 also enters its critical section.
If mutual exclusion is satisfied, this hence means that the once process 1 leaves its critical
section, process 0 must immediately be granted access to its critical section.
Note that this property does not holds in the Kripke structure in Figure 11.3. A coun-
terexample to this property is the path (prefix) s0s5s7s8s1s2 . . ., where in state s7 trying0
holds, so it must be the case that s7s8s1s2 . . . |= trying1 U(in1 U in0) then process 1 enters
its critical section, so s8s1s2 . . . |= in1 U in0, however, since in s1 neither in1 nor in0 hold,
the property is not satisfied.



84 CHAPTER 11. LINEAR TEMPORAL LOGIC (LTL)

In the example we have seen that, if a property does not hold, we can give a path that does
not satisfy the property. For properties of the form Gφ it suffices to give a finite prefix of the path
to a state in which φ is violated. With a slight abuse of terminology, we also refer to such a path
prefix as path in the rest of this chapter.

Exercise 11.4 Consider the following Kripke structure K over the set of atomic propositions
{a, b}.

s0

s1

{a}
s2 {a, b}

s3

{a, b}

s4{a}

Indicate for each of the following LTL formulas the set of states for which these formulas are
satisfied.

1. X a

2. X(X a)

3. G b

4. GF b

5. FG a

6. G(aU b)

7. G(bU a)

8. F(bU a)

Exercise 11.5 Consider the following Kripke structure K with initial state s1 over the set of
atomic propositions AP = {a, b, c}:

s1{a}

s4{b}

s3

{b, c}

s2 {c}

s5

{a, b, c}

Indicate for each of the LTL formulas φi below whether K |= φi. Justify your answers! If K ̸|= φi

give a path π of K such that π ̸|= φi.

1. φ1 = FG c
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2. φ2 = GF c

3. φ3 = X¬c→ XX c

4. φ4 = G a

5. φ5 = aUG(b ∨ c)
6. φ6 = (XX b)U(b ∨ c)

Exercise 11.6 Suppose we have two users, Peter and Betsy, and a single printer device Printer.
Both users perform several tasks, and every now and then they want to print their results on the
Printer. Since there is only a single printer, only one user can print a job at a time. Suppose we
have the following atomic propositions for Peter at our disposal:

• Peter.request : indicates that Peter has requested usage of the printer;
• Peter.use: indicates that Peter is using the printer;

For Betsy, similar predicates are defined. Specify in LTL the following properties:

1. Mutual exclusion, that is, only one user at a time can use the printer.

2. Finite time of usage, that is, a user can print only for a finite amount of time.

3. Absence of individual starvation, that is, if a user requests to print something, they are
eventually able to do so.

4. Absence of blocking, that is, a user can always request to use the printer.

Exercise 11.7 In this exercise we extend LTL with some new operators. Let φ and ψ be LTL
formula. Make the definitions of the following informally explained operators precise by providing
LTL formulas that formalize their intuitive meanings.

1. ”At next”, denoted φNψ which means at the next time where φ holds, ψ also holds.

2. ”While”, denoted φWψ which means φ holds at least as long as ψ does.

3. ”Before”, denoted φBψ which means that if ψ holds sometime, φ does so before.

Exercise 11.8 Recall the description of tic-tac-toe for which you created a Kripke structure in
Exercise 9.2. Recall the set of atomic propositions

AP = {markedy(i, j) | y ∈ {×,#} ∧ 1 ≤ i, j ≤ 3} ∪ {turn×, turn#,win×,win#, draw} .

Give LTL formulas for the following statements:

1. The game always ends

2. There is at most one winner

3. No player can take two turns in a row

4. A cell can contain at most one marking

5. A marked cell can never be unmarked

11.3 Equivalence of LTL formulas

In propositional logic and predicate logic we commonly use equivalences between formulas to
reason about logical statements. For instance, ¬¬a ≡ a, and ¬(a∧ b) = ¬a∨¬b. In LTL there are
similar rules of equivalence. We first define what it means when one LTL formula implies another.
Let φ and ψ be LTL formulas, then

φ =⇒ ψ if and only if ∀π : π |= φ =⇒ π |= ψ

We extend this to equivalence in the standard way. Let φ and ψ be LTL formulas, then we have
that

φ ≡ ψ if and only if φ =⇒ ψ and ψ =⇒ φ
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Note that LTL subsumes propositional logic. Therefore, all equivalences from propositional
logic are also valid for LTL. In this section we introduce additional rules that are valid for LTL.

11.3.1 A remark on negation

Before we go on and define some equivalences on LTL formulas, we first remark on negation of
LTL formulas in general. For an infinite path, it holds that a property is true if and only if its
negation is not true, that is,

π |= φ if and only if π ̸|= ¬φ

However, for a Kripke structure, this equivalence does not hold! A Kripke structure
in general may not satisfy a property, while it also does not satisfy the negation of this property.
This is due to the fact that both the property and its negation are evaluated over all infinite paths
starting in the initial state of the Kripke structure.

s0s1

{a}
s2

Figure 11.4: Negation example.

Example 11.3.1. Consider the Kripke structure in Figure 11.4. This Kripke structure does not
satisfy F a nor does it satisfy ¬F a. Counter-examples to the first formula are (possibly finite) paths
going to state s2 from the initial state. Counter-examples to the second formula are (possibly finite)
paths going to state s1 from the initial state.

11.3.2 Several laws of equivalence

From the semantics of LTL, it directly follows that F and G can be derived once we have the
operator U. In particular, we have the following rules.

(F-U) Fφ ≡ trueUφ
(G-F) Gφ ≡ ¬F¬φ

Because of this, some presentations of LTL will not introduce F and G explicitly as part of the
definition, but instead introduce them as derived operators.

Duality From these previous equalities, we immediately get the following dualities between
operators in LTL.

(Du-X) ¬Xφ ≡ X¬φ
(Du-G) ¬Gφ ≡ F¬φ
(Du-F) ¬Fφ ≡ G¬φ

Note that the last two dualities are similar to the duality between ∀ and ∃ is predicate logic.
For X, we can for instance see that the duality holds using the following reasoning. Let π be

an arbitrary infinite path such that π |= ¬Xφ. Then π ̸|= Xφ. From the semantics it follows that
π[1 . . .] ̸|= φ, hence π[1 . . .] |= ¬φ, so π |= X¬φ.

Idempotency Operators are idempotent if multiple applications of the same operator do not
change the outcome. The temporal operators of LTL satisfy idempotency laws that can be derived
from the semantics of LTL. In particular, we have the following laws.
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(Id-G) GGφ ≡ Gφ
(Id-F) FFφ ≡ Fφ
(Id-U1) φU(φUψ) ≡ φUψ
(Id-U2) (φUψ)Uψ ≡ φUψ

As an example, we sketch the proof of the idempotency law for G. Consider an arbitrary infinite
path π such that π |= GGφ. According to the semantics, this is equivalent to ∀i ≥ 0.π[i . . .] |= Gφ.
This is equivalent to (again using the semantics) ∀i ≥ 0.∀j ≥ 0.π[i . . .][j . . .] |= φ. Note that
π[i . . .][j . . .] = π[(i + j) . . .], so this is equivalent to ∀i ≥ 0.∀j ≥ 0.π[(i + j) . . .] |= φ. Using
predicate logic, this is easily shown equivalent to ∀i ≥ 0.π[i . . .] |= φ, which is equivalent to Gφ.

The other laws can be proven using the semantics in a similar way.

Absorption The absorption laws allow to eliminate an occurrence of the F or G operators,
depending on the law. The first law observes that from some point on, infinitely often φ, is
equivalent to saying that φ holds infinitely often. The second law expresses that when always
ultimately φ is the same as saying ultimately φ.

(Ab-FGF) FGFφ ≡ GFφ
(Ab-GFG) GFGφ ≡ FGφ

Distributivity We also have a number of distributivity laws. In particular, X distributes over
conjunction and disjunction, eventually distributes over disjunction and globally distributes over
conjunction.

(Di-X∧) X(φ ∧ ψ) ≡ Xφ ∧ Xψ
(Di-X∨) X(φ ∨ ψ) ≡ Xφ ∨ Xψ
(Di-F∨) F(φ ∨ ψ) ≡ (Fφ) ∨ (Fψ)
(Di-G∧) G(φ ∧ ψ) ≡ (Gφ) ∧ (Gψ)

Be careful however! Even though it might be tempting to distribute F over ∧ and G over ∨,
these laws do not hold in general.

F(φ ∧ ψ) ̸≡ (Fφ) ∧ (Fψ)

G(φ ∨ ψ) ̸≡ (Gφ) ∨ (Gψ)

Next also distributes over all other temporal operators:

(Di-XF) XFφ ≡ FXφ
(Di-XG) XGφ ≡ GXφ
(Di-XU) X(φUψ) ≡ (Xφ)U(Xψ)

For some proofs it may be useful to use monotonicity of the temporal operators. This means
that if we can prove that φ =⇒ ψ holds, and Xφ holds, then also Xψ holds. Note that these
rules are implications instead of equivalences.

(M-X) (φ =⇒ ψ) =⇒ Xφ =⇒ Xψ
(M-F) (φ =⇒ ψ) =⇒ Fφ =⇒ Fψ
(M-G) (φ =⇒ ψ) =⇒ Gφ =⇒ Gψ
(M-U1) (φ =⇒ φ′) =⇒ (φUψ) =⇒ (φ′ Uψ)
(M-U2) (ψ =⇒ ψ′) =⇒ (φUψ) =⇒ (φUψ′)

To illustrate why these last results hold, consider the proof of M-X, other results can be proven
in a similar way.

Lemma 11.3.1. Let φ and ψ be arbitrary LTL formulas. Then

(φ =⇒ ψ) =⇒ Xφ =⇒ Xψ
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Proof. Fix arbitrary LTL formulas φ and ψ, and assume that φ =⇒ ψ, i.e., for all infinite paths
π, if π |= φ then π |= ψ. We have to prove that Xφ =⇒ Xψ, i.e., for all infinite paths π,
π |= Xφ =⇒ Xψ. Fix arbitrary infinite path π, and assume that π |= Xφ. By definition of

X, then π[1 . . .] |= φ. Then, according to our assumption, π[1 . . .] |= ψ, hence by definition of X,
π |= Xψ.

Exercise 11.9 Consider the formulas φ = aU(bU c) and ψ = (aU b)U c. Determine whether
these formulas are equivalent. If they are, give a proof, if not, give a counterexample (that is, a
path such that one formula holds on the path and the other does not).

Exercise 11.10 For each of the following equivalences, state if the equivalence holds. If it holds,
prove the equivalence. If not, provide a counter-example that illustrates that the formula on the
left and the formula on the right are not equivalent.

1. Gφ→ Fψ ≡ φU(ψ ∨ ¬φ)
2. FGφ→ GFψ ≡ G(φU(ψ ∨ ¬φ))
3. GG(φ ∨ ¬ψ) ≡ ¬F (¬φ ∧ ψ) (easy)
4. F(φ ∧ ψ) ≡ Fφ ∧ Fψ

5. Gφ ∧ XFφ ≡ Gφ

6. Fφ ∧ XGφ ≡ Fφ (easy)

7. GFφ→ GFψ ≡ G(φ→ Fψ)

8. XFφ ≡ FXφ

11.4 Verifying LTL properties using Spin

In the previous chapter, we have verifies safety properties using assertions. Recall that safety
properties express that “nothing bad ever happens”. For instance, there is no violation of mutual
exclusion. However, if we want to express liveness properties, that is, properties expressing that
“something good will eventually happen”, using assertions does not suffice. In such cases, LTL is a
useful tool. In the remainder of this chapter we illustrate how LTL properties can be verified using
Spin. One key difference between safety and liveness properties is that, when a model violates a
liveness property, Spin will find a lasso, i.e., a loop on which “something good” never happens,
and a prefix that leads to a state on this loop. This in contrast to the traces that show assertion
violations.

11.4.1 Spin LTL syntax

When using LTL in Spin we need to be careful about the syntax used. Spinsupports the following
operators (where we show both the temporal operators and the standard boolean operators).

• [] the temporal operator always, i.e. G
• <> the temporal operator eventually, i.e., F
• ! the boolean operator for negation, i.e., ¬
• U the temporal operator strong until, i.e., U
• W the temporal operator weak until; p W q is equivalent to []p || (p U q), that is, it is like
until, but is is also satisfied if p always remains true,and q never becomes true.

• V the dual of U: (p V q) means !(!p U !q))

• && the boolean operator for logical and, i.e. ∧
• || the boolean operator for logical or, i.e, ∨,
• /\ alternative form of &&
• \/ alternative form of ||
• -> the boolean operator for logical implication, i.e., →
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• <-> the boolean operator for logical equivalence, i.e., ↔.

This overview was taken from the Spin manual.1

Example 11.4.1. Consider the model of the alternating bit protocol with unreliable channels in-
troduced in Chapter 10. Since the messages are accepted in a cyclic way, each of the messages
should be accepted eventually.

We can check this by determining that local variable last_m in the Receiver process can take
both values eventually.

This can be expressed in Spin’s LTL version as follows.

ltl msg_zero { <>(Receiver:last_m == 0)};
ltl msg_one { <>(Receiver:last_m == 1)};

Remark 11.4.1. Note that we use a pretty ugly trick to express the property in this example. We
use remote references, that allow us to peek into the scope of the receiver process.2

In particular, the use of remote references is not compatible with some of the techniques that
Spin uses internally. If you want to do verification that refers to local variables, it is therefore
better to make those variable global.

In what follows, we always ensure that variables used in LTL formulas are global variables.

11.4.2 Checking liveness properties

Liveness properties, typically in the form of LTL formulas, can be checked using Spin as follows.
First, LTL formulas are added to a model. When compiling the pan executable, the option -DSAFETY

should not be passed to the compiler. Additionally, we need to pass the -a (find acceptance cycles)
option to pan.

When Spin finds a counter-example of a liveness property, it stores the counterexample in a
trail-file as before. Its content can be viewed in the exact same way as the earlier counterexample
traces. Note that for LTL properties, typically, the counterexample has the shape of a lasso: it
gives a path to a state that is on a cycle which shows why the property does not hold.

Example 11.4.2. Consider the version of the alternating bit protocol with unreliable channels,
that we adapted for verification by making last_m a global variable, and to which the two LTL
properties have been added. We show the relevant updates in Listing 5. Assume this is stored in
abp-unreliable-ltl.pml.

Note we ensure that only one LTL formula is not commented out. Verification can now be run
using the following commaands.

spin -a abp-unreliable-ltl.pml
gcc -DNOREDUCE -o pan pan.c
./pan -a

If the property does not hold, the tool will report, e.g., pan:1: acceptance cyle (at depth 24).
It also indicates that a counterexample has been stored.

Exercise 11.11 Using Spin, verify both properties that we formulated in the previous example.
You will find that one property is true, and the other property is false. Explain why this is the
case.

Exercise 11.12 In Exercise 10.9 we verified that when the game of tic-tac-toe terminates either
we have a winner or we have a draw. This gives us partial correctness in the sense that our result
holds if the process terminates. To obtain correctness, we however need to guarantee that the
property holds eventually.

Extend your model of tic-tac-toe with an LTL formula that checks that eventually we either
have a winner or a draw. Verify using Spin that the property is satisfied.

1See http://spinroot.com/spin/Man/ltl.html.
2See http://spinroot.com/spin/Man/remoterefs.html for an explanation

http://spinroot.com/spin/Man/ltl.html
http://spinroot.com/spin/Man/remoterefs.html
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#define N 2 /* dimension of channels */
#define MAX 2 /* Send integers modulo MAX */

mtype = { MSG, ACK, ERROR };

chan fromS = [N] of { mtype, byte, bit }; /* From S to unreliable channel */
chan toR = [N] of { mtype, byte, bit }; /* From unreliable channel to R */
chan fromR = [N] of { mtype, bit }; /* From R to unreliable channel */
chan toS = [N] of { mtype, bit }; /* From unreliable channel to s */

byte last_m = MAX-1; /* data of last error-free message, for verification */

ltl msg_zero { <>(last_m == 0) };
//ltl msg_one { <>(last_m == 1) };
proctype Receiver(chan in,out) {
byte m; /* message data received */
bit recvbit; /* alternation bit received */
bit last_recvbit = 1; /* receive bit of last error-free message */

Listing 5: Updates to alternating bit protocol for LTL verification.



Chapter 12

Labelled transition systems

The formal model we discussed so far, Kripke structures, focuses on the atomic propositions that
hold in a particular state. Promela models allow to give a high-level description of Kripke
structures. However, if we want to talk about communication between components, we need to
label the transitions with the input and output actions that happen on these transitions. We
silently used this when we used channels in Promela models.

Labelled transition systems (LTSs) provide an alternative formalization of state-based sys-
tems where the focus is exactly on the actions that happen when we take a transition, and we
cannot see any information about states. LTSs can, for example, be used to automatically test
implementations, and to give a precise formal semantics to UML state machine diagrams.

At the end of this chapter, you

• can describe a system using labelled transition systems;
• can explain the difference between labelled transition systems and Kripke structures;
• can explain non-determinism and its uses;
• can identify states, transitions, and traces.

12.1 Labelled transition systems

One approach to modelling the behavior of a system is to focus on the way it interacts with its
environment. In doing so, we use basic actions to describe elementary communications as the
key building block of a model. A labelled transition system (LTS) captures the states of the
system, and has transitions labelled by actions to describe the evolution of the system when a
particular action happens. An LTS can be visualized as a graph where vertices are the states
and edges represent transitions between the states. Edges are labelled by actions. Depending on
the properties that we are interested in, some system behavior may be irrelevant. Such behavior
can be considered internal, i.e., we abstract away from the details of exactly what the system is
doing when moving between states via an internal transition. Internal transitions are transitions
labelled with the internal action τ (sometimes also referred to as the silent action).

Formally, labelled transition systems are defined as follows.

Definition 12.1.1. A Labelled Transition System (LTS) is a tuple (S, s0,Act ,→), where

• S is a set of states;
• s0 ∈ S is the initial state;
• Act is a set of actions (not including the internal action τ); and
• →⊆ S ×Act ∪ {τ} × S is a transition relation.

An LTS is finite if S and → are finite. With s
a−→ s′, we denote that (s, a, s′) ∈→.

Example 12.1.1. Figure 12.1 shows an example of an LTS modelling a simple beverage vending ma-
chine. The set of states of this LTS is S = {s0, s1, s2, s3}, with initial state s0. The set of actions is
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s0

s1 s2s3

coin

ττ

teacoffee

Figure 12.1: Labelled transition system of a simple machine producing either coffee or tea.

Act = {coin, coffee, tea}. Transition relation → ={(s0, coin, s1), (s1, τ, s2), (s1, τ, s3), (s2, tea, s0),
(s3, coffee, s0)}.

Depending on the context in which labelled transition systems are used, we sometimes see
small variations. For instance, sometimes LTSs are described using sets of initial states, instead
of a single initial state. In Chapter 14 we will see variations of LTSs in which we split the actions
into input and output actions.

Exercise 12.1 Consider an oven that follows the same description as the oven in Exercise 9.1.
Now, instead of a Kripke structure, create an LTS modelling the oven behavior. Again make sure
that it satisfies the following requirements:

• The oven is never cooking with its door opened.
• The oven starts cooking only after the start button is pressed.
• After starting to cook, the oven eventually stops cooking.

The set of all successors of a state s is the set containing all states reachable from state s by
performing a single step, not regarding the action.

Succ(s) = {s′ ∈ S | ∃α ∈ Act ∪ {τ} : s α−→ s′}
In a similar way as for the successors, we can define the set of predecessor states of s that can

reach s by performing a single α-step.
We refer to the set of all predecessors of state s as Pred(s):

Pred(s) = {s′ ∈ S | ∃α ∈ Act ∪ {τ} : s′ α−→ s}
In other words, Pred(s) contains all states that can reach state s by performing any action.
States that do not have outgoing transitions are referred to as deadlock states, or simply

deadlocks. When modelling real systems they are typically undesired, and constitute a design
error in the model.

Definition 12.1.2 (Deadlock state). A state s ∈ S is called deadlock if and only if Succ(s) = ∅.

Exercise 12.2 Give an LTS for a FIFO (first-in-first-out) queue of capacity 2 that can handle
data items of value 0 and 1. Values are read by executing the action in0 or in1, reading 0 and 1
respectively. Values are output using the actions out0 and out1.

12.2 Traces

An LTS describes all possible behaviors of a system. All valid behaviors start from an initial state
of the LTS. We describe the behaviors using traces. A trace is a (possibly empty) sequence of
actions performed by the system. Given a set of actions Act , formally a trace is an element of
(Act ∪ {τ})∗, where ϵ denotes the empty trace. We also sometimes use notation borrowed from
regular expressions to describe (sets of) traces. For example, a · b is used to denote the trace
consisting of action a followed by action b. We usually omit the · and simply write a b. Also, a∗

denotes all traces that consist of zero or more repetitions of a.
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To formalize the traces of an LTS, we first generalize the transition relation to allow for
sequences of actions.

Definition 12.2.1 ((Strong) traces). Let (S, s0,Act ,→) be an LTS. We define the generalized
transition relation ↠. Let s, t ∈ S, a ∈ Act ∪ {τ}, and σ ∈ (Act ∪ {τ})∗. Then

s
ϵ−→→ s for all s ∈ S

s
aσ−−→→ t if s

a−→ s′ and s′
σ−→→ t for some s′ ∈ S

We write s
σ−→→ if there is some state t ∈ S such that s

σ−→→ t. The set of strong traces (sometimes
referred to as traces) starting in state s is defined as

traces(s) = {σ | s σ−→→ }

The traces of an LTS are the traces of its initial state.

Note that every state can reach itself by executing the empty sequence of actions ϵ, and there
is a trace aσ from one state s to a state t if from s we can do a transition labelled a to some state
s′, from which there is trace σ from s′ to t.

Example 12.2.1. Reconsider Figure 12.1. All valid traces of the LTS in Figure 12.1 consist of zero
or more repetitions of the following two sequences:

1. coin τcoffee
2. coin τ tea

Followed by a prefix of these traces. Concretely, the prefixes are the following:

1. ϵ
2. coin
3. coin τ

So, for instance, coin τ tea coin τcoffee coin τ is a sequence, as is coin.

Exercise 12.3 At a high level of abstraction, the engine of a car can be seen as something that
can turn on and off. Also, the engine can malfunction, in which case it can be repaired. A labelled
transition system modelling the behavior of such an engine is depicted below. It consists of 3
states, 4 distinct actions, and 5 labelled transitions.

turn on

malfunction

turn off

malfunction

repair

1. Give five traces of this labelled transition system.

2. How many traces does this labelled transition system have?

Observe that traces are very closely related to paths. Paths are sequences of the states that
can be reached from a given state, but do not include the transitions. Traces instead give the
actions that appear on the transitions, and do not include the states.
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12.3 Weak traces

Internal transitions abstract away from some internal behavior of a system. It is assumed that
an external observer cannot see the internal actions. Also, the observer cannot see in which state
the system currently is. So far, our definition of traces does not consider only observable actions,
since it does not treat the internal action τ specially.

We can restrict traces to consider sequences of observable actions by abstracting from the

internal action τ . If s can do the trace coin τ coffee, i.e. s
coin τ coffee−−−−−−−−→→ t, then we write s

coin coffee
=======⇒

t for the sequence of observable actions. We say that s is able to perform weak trace coin coffee.
A weak trace is an element of Act∗. Note that we write Act+ for the weak traces containing at
least one observable action.

Formally, the weak traces of a (state in an) LTS are defined as follows.

Definition 12.3.1 (Weak traces). Let (S, s0,Act ,→) be an LTS with s, t ∈ S. We first define
the weak generalized transition relation =⇒ as follows. Let a ∈ Act , s, t ∈ S, and σ ∈ Act+.

s
ϵ

==⇒ t if s
τ∗

−−→→ t

s
a

==⇒ t if ∃s1, s2 : s
ϵ

==⇒ s1
a−→ s2

ϵ
==⇒ t

s
aσ
==⇒ t if ∃s′ ∈ S.s

a
==⇒ s′ ∧ s′ σ

==⇒ t

We write s
σ

==⇒ if there is some state t ∈ S such that s
σ

==⇒ t. The set of weak traces starting in
state s is defined as

wtraces(s) = {σ | s σ
==⇒}

The weak traces of an LTS are the weak traces of its initial state.

Example 12.3.1. Consider the labelled transition system from Figure 12.1. This LTS has infinitely
many weak traces. Some concrete examples are:

• ϵ
• coin
• coin coffee
• coin tea

All other weak traces of this LTS can be built by repeating the last two weak traces zero or more
times, followed by one of the first two weak traces. Note that, in particular, none of the weak
traces can contain the internal action τ .

Exercise 12.4 Consider the ignition of a car. Initially, the ignition is off. When the ignition is
turned on, a signal is given to the engine that it must start, and eventually the engine turns on.
Likewise, when the ignition is on, the ignition can be turned off, the engine is signalled to stop,
and the engine shuts off.

From the point of view of the driver, we could consider the start and stop signals internal to
the system, and we can only observe whether the ignition is turned on or off, and whether the
engine is running, we therefore do not model start and stop explicitly, but consider them internal
actions (τ).

This situation is depicted in the following LTS.

ignition on

τ

engine on

ignition off

τ

engine off
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1. Give one weak trace of this LTS that contains at least two different actions.

2. Give one weak trace of this LTS that contains at least four different actions.

We also define the set of states that is reached after executing a weak trace σ.

Definition 12.3.2 (after). Let (S, s0,Act ,→) be an LTS with s ∈ S. Given a a trace σ ∈ Act∗,
the set of states reached from s after executing σ is defined as follows:

s after σ = {t ∈ S | s σ
==⇒ t}

In other words, s after σ contains all states that can be reached from state s by performing
weak trace σ. We generalize this to sets of states S′ ⊆ S:

S′ after σ =
⋃
s∈S′

s after σ

In a similar way, we can define the set of all states that can be reached from a given state s is
denoted Reach(s).

Definition 12.3.3 (Reachable states). Let (S, s0,Act ,→) be an LTS with s ∈ S. The set of
states reachable from s is defined as follows:

Reach(s) = {t ∈ S | ∃σ ∈ Act∗.s
σ

==⇒ t}

We refer to Reach(s0) as the reachable states of the LTS.

In the rest of the reader we typically assume that all states s ∈ S are reachable from the initial
state, i.e., S = Reach(s0).

Exercise 12.5 Consider the following labelled transition system.

s0 s1 s2 s3

s4

a

b

a
b

τ

b

a

Determine each of the following sets.

1. Reach(s0)

2. s after b a

3. s after a a

4. s after a a b

5. s after a b

12.4 Non-determinism

The close reader may have already observed that from a particular state s in an LTS, there
can be multiple outgoing transitions with the same label. In such a case, we call the LTS non-
deterministic. More precisely, an LTS is deterministic if it defines for every state s ∈ S and action
a ∈ Act at most one target state.

For an LTS without internal transitions, determinism is defined as follows.

Definition 12.4.1 (Deterministic LTS (without internal transitions)). Let A = (S, s0,Act ,→) be

an LTS such that for all s
a−→ t, a ̸= τ . LTS A is deterministic if and only if for all s, t, t′ ∈ S and

a ∈ Act, s
a−→ t ∧ s a−→ t′ =⇒ t = t′.
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If an LTS is not deterministic, we call it non-deterministic.

Example 12.4.1. One could argue that the LTS modelling the engine in Exercise 12.3 is unrealistic.
For instance, why does the engine always have to be repaired when it malfunctions? Why can
the engine malfunction if it is turned off? We therefore, instead, consider only a very specific
type of malfunction. The engine can be turned on and off. If the ignition is turned on, then
non-deterministically the engine turns on, or it does not. An LTS modelling such an engine is
shown below.

ignition on

i

malfunction

ignition off

iengine on

ignition off

engine off

In this LTS we use the action i to model the nondeterministic option to malfunction. Essentially,
the action i here models some internal behavior of the engine.

When considering LTSs with internal transitions, we need to be a bit more careful when defining
determinism. Several alternatives have been described in the literature. For instance, one could
simply apply our previous definition also to LTSs with internal transitions. Here, however, we will
follow the definition as it is given in the article on which we base Chapter 14.

Definition 12.4.2 (Deterministic LTS (with internal transitions)). Let A = (S, s0,Act ,→) be an
LTS. We say A is deterministic iff we have for all s ∈ S and a ∈ Act that |s after a| ≤ 1.

Note that as an immediate consequence of this definition, any LTS with states s, t, t′ such that
s

a−→ t
τ−→ t′ is non-deterministic by definition, since s after a = {t, t′}.

For LTSs without internal actions, the two definitions coincide.

Example 12.4.2. Recall the LTS shown in Figure 12.1. This LTS is non-deterministic, since from
state s0, two states are reachable by following the coin transition followed by a τ -transition. More
formally, s0 after coin = {s1, s2, s3}.

Exercise 12.6

1. Draw a labelled transition system modelling a light switch with actions on and off .

2. Draw a labelled transition system that extends this light switch such that switching on/off
and their effect are both modelled explicitly. Use actions switch on, switch off as well as
on and off .

3. Now, draw a labelled transition system that extends this light switch with a nondetermin-
istic option to break when switching on the light. Use an action i to represent the choice.
When broken, no action is possible anymore.

12.5 Parallel composition

To model complex systems, a good approach is to first build simple blocks. Second, these basic
blocks are composed to form a more complex system. We already saw some examples of this in
Chapter 10. We here consider the composition of labelled transition systems using handshaking
communication. The idea is to define a set of handshaking actions, called H. Two labelled
transition systems communicate via H by performing actions in H together. That is, the two LTSs
need to synchronize on all actions in H. For actions outside H, each LTS evolves independently
of the other. Formally, this composition is defined as follows.
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Definition 12.5.1 (Handshaking parallel composition of LTSs). Let L1 = (S1, s1,0,Act1,→1) and
L2 = (S2, s2,0,Act2,→2) be two LTSs, and assume a set of handshaking actions H ⊆ Act1 ∩Act2.
We define the parallel composition L1 ∥H L2 as the LTS (S, s0,Act ,→), where

• S = S1 × S2,
• s0 = (s1,0, s2,0),
• Act = Act1 ∪Act2,
• Transition relation → is the least set of transitions satisfying the following:

s1
a−→ s2 t1

a−→ t2

(s1, t1)
a−→ (s2, t2)

a ∈ H
s1

a−→ s2

(s1, t1)
a−→ (s2, t1)

a ̸∈ H
t1

a−→ t2

(s1, t1)
a−→ (s1, t2)

a ̸∈ H

Note that when a ̸∈ H, it may be the case that a = τ , i.e., the internal transition does not
communicate, and is executed locally.

Example 12.5.1. A one-place buffer can read an element along its input, and output that element
along its output. Consider the following pair of labelled transition systems that can both input
and output the element 0. The first buffer inputs using the action in0, and outputs using com0,
and the second buffer inputs using com0 and outputs using out0. The LTSs are as follows:

s0

s1

t0

t1

in0 com0 com0 out0

Let H = {com0}, so the LTSs synchronize on com0, such that the element output by the first
buffer is moved to the second buffer. The resulting parallel composition is the following.

s0, t0

s1, t0

s0, t1

s1, t1

in0 com0

out0

in0

out0

Exercise 12.7 We extend the buffers from the previous example, such that the buffers can read
the values 0 and 1, instead of just 0. So, the labelled transition systems are the following. The
LTSs are as follows:

s0

s1

s2

t0

t1

t2

in0

in1

com0

com1

com0

com1

out0

out1
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Let H = {com0, com1}. Give the labelled transition system that corresponds to the handshaking
parallel composition of these labelled transition systems.

12.6 Applications

Similar to Kripke structures, labelled transition systems can also be used to verify (model check)
systems. For labelled transition systems, typical logics that are used are Hennessy-Milner logic
and the modal mu-calculus (instead of LTL, CTL or CTL∗). These logics are out of the scope of
this course, but they are for instance covered in the bachelor course process theory, and master’s
courses such as system validation and algorithms for model checking. Labelled transition systems
can also be used to automatically generate test cases in model based testing. This is covered in
Chapter 14. Labelled transition systems also form the basis for formalizing the semantics of other,
higher-level specification formalisms. We show how (a subset of) UML state machine diagrams
can be formalized in terms of LTSs in the next chapter.



Chapter 13

Formal state machine diagrams

In Chapter 6, we introduced UML state machine diagrams. In Chapters 9 and 12, we discussed
Kripke structures and labelled transition systems. In all of these formalisms, we reason about
systems in terms of states and transitions between states. However, state machine diagrams
offer a more high-level description of the behavior of a system, which allows for a more concise
specification. The downside of this is that it is rather difficult to reason about the behavior
described by a state machine diagram. To enable formal reasoning about the behavior described
by UML state machine diagrams̊a we need to give their semantics.

In this chapter, we present such a semantics using labelled transition systems. To keep things
simple, we restrict ourselves to a small subset of UML state machine diagrams. The formalization
in this chapter is inspired by a formalization of Harel’s state charts by Mousavi in an earlier version
of this course. A similar formalization is given in Lilius and Paltor (1999).

At the end of this chapter, you

• can formally describe the syntax of state machine diagrams;
• can explain the semantics of state machine diagrams;
• can translate simple state machine diagrams into labelled transition systems;
• can formally reason about state machine diagrams.

13.1 State machine diagram syntax

In Chapter 6 we have seen that state machine diagrams contain hierarchies of (pseudo-) states
that are connected by transitions. The transitions are triggered by events, enabled by guards,
and they result in activities. Also, states have enter, exit and do activities. It is important to
observe that events can also appear as activities; in this case, occurrence of an event means that
it is either sent to the environment (to be processed by another state machine), or to the state
machine itself. In this chapter the only activities we consider are events.

To formally define the translation of (a subset of) state machine diagrams into LTSs, we first
need to formally capture the syntax (and structure) of state machine diagrams. This is done in
the rest of this section.

13.1.1 States

We first define the state structure of a finite state machine. The state structure records for all
states their type, the children, and whether they are initial or not. Recall from Chapter 6 that
a state can either be simple or composite. If a state is composite, it can be orthogonal. The
UML standard prescribes three Booleans for every state, recording whether it is simple, composite
and orthogonal. In theory, this would give 8 possibilities, whereas only three options are valid:
a state is either simple, composite and non-orthogonal, or composite and orthogonal. Here we
therefore we opt to define these three types of states directly, referring to a simple state as basic, a
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composite, non-orthogonal state as an or-state, and a composite, orthogonal state as an and-state.
In the formalization, the regions within an orthogonal state are themselves treated as or-states.

Definition 13.1.1 (State structure). The state structure of a state machine diagram is a 4-tuple
S = (S, type, chld, initial), where

• S is a (finite) set of states;
• type : S → {Basic,Or,And} is a total function indicating the type of each state. A state can
be a simple-state, a composite-state, or an orthogonal -state;

• chld : S → 2S is a total function defining for each state the set of children that is structurally
contained within that state;

• initial : S → B is a total function indicating whether a state is initial or not.

The state types described above correspond directly to the types in the state machine diagrams.
We do take the initial pseudo-states into account, but do not model them explicitly as a state in
the definition above, instead we mark all states connected to an outgoing transition from an initial
state as initial. Note that regions of an orthogonal state are always initial.

We assume that a defined state structure is well-formed. In particular, this requires that basic
states have no children, and that or-states have no more that one child which is initial.

For convenience, we always consider a state diagram D to be completely contained inside one
composite state at the highest hierarchical level, which we call root.

S7

S6

S5S4

S3

S2

R1

R2

S1
e1/e2

e2

e4 e1/e2

e2/e4

e3/e4

e2/e4

Figure 13.1: A hierarchical state diagram with sub-machines and regions

Example 13.1.1. Figure 13.1 shows an example state machine diagram with all three kinds of
states, and two regions within the orthogonal state. For this diagram, we have:

• S = {root,S1, . . . ,S7,R1,R2},
• type(S1) = type(S3) = type(S4) = type(S5) = type(S7) = Basic, type(S2) = And, and
type(root) = type(S6) = type(R1) = type(R2) = Or,

• chld(root) = {S1,S2,S6}, chld(S2) = {R1,R2}, chld(R1) = {S3}, chld(R2) = {S4,S5} and
chld(S6) = {S7}. All other states have an empty set of children.

• Finally, for s ∈ {root,S1,S3,S4,S7,R1,R2}, we have initial(s) = true. For all other states,
this value is false.

In the rest of this section, we fix a state machine diagram with state structure S = (S, type,
chld, initial). To further characterize the state structure, we define the (strict) descendants, con-
taining all states contained in a state, and the (strict) ancestors, capturing all states in which a
particular state is contained.

For a state s ∈ S, its strict descendants, denoted sdesc(s), are all its children, as well as their
strict descendants.

Definition 13.1.2 ((Strict) descendants). For state s ∈ S, the set of strict descendants, denoted
sdesc(s), is the smallest set of states satisfying:
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• chld(s) ⊆ sdesc(s); and
• ∀s, s′ ∈ S.s′ ∈ chld(s) ∧ s′′ ∈ sdesc(s′) =⇒ s′′ ∈ sdesc(s).

The descendants of s, denoted desc(s) are defined as desc(s) = {s} ∪ sdesc(s).

Example 13.1.2. Recall the example in Figure 13.1. We have, for instance,

sdesc(S2) = {R1,S3,R2,S4,S5} desc(S2) = {S2,R1,S3,R2,S4,S5}
sdesc(S6) = {S7} desc(S6) = {S6,S7}

For a state s ∈ S, its (strict) ancestors are all states in which s is (strictly) contained.

Definition 13.1.3 ((Strict) ancestors). For state s ∈ S, the set of strict ancestors, denoted
sanc(s) and the ancestors, denoted anc(s) are defined as follows:

sanc(s) = {s′ ∈ S | s ∈ sdesc(s′)}
anc(s) = {s′ ∈ S | s ∈ desc(s′)}

Example 13.1.3. Recall the example in Figure 13.1. We have, for instance,

sanc(S2) = {root} anc(S4) = {root,S2,R2,S4}

For a non-empty set of states S′, we define their least common or-ancestor. The least common
or-ancestor of a non-empty set of states is the or-state having all the states in the set as descendants,
while being closest (in hierarchy distance) to these states compared to any other or-state that has
the states as descendants. Note that the least common strict or-ancestor lcsoa(S′) exists for
∅ ⊂ S′ ⊆ S, and is uniquely.

Definition 13.1.4 (Least common strict or-ancestor). The least common strict or-ancestor,
lcsoa : 2S → S is defined as follows. For ∅ ⊂ S′ ⊆ S, lcsoa(S′) is the (unique) state satisfy-
ing each of the following conditions:

• ∀s ∈ S′.lcsoa(S′) ∈ sanc(s), i.e., it is a strict ancestor of each of the states in S′,
• type(lcsoa(S′)) = Or, i.e., it is an or-state, and
• ∀s ∈ S.type(s) = Or∧(∀s′ ∈ S′.s ∈ sanc(s′)) =⇒ lcsoa(S′) ∈ desc(s), i.e., the least common
strict or ancestor is a descendant of each of the or-states that are strict ancestors of all states
S′. This characterizes the deepest such or-state.

Example 13.1.4. Recall the state machine diagram from Figure 13.1. We have the following:

lcsoa({S4,S5}) = R2 lcsoa({S3,S6}) = root

lcsoa({S2}) = root lcsoa({S3}) = R1

lcsoa({R2}) = R2

Note that the least common strict or-ancestor of S3 is R1, and not S3, since S3 is not an or-state.

13.1.2 Transitions

Besides the state structure, the transition relation of a state diagram also needs to be formalized.
We do this as follows.

Definition 13.1.5 (Transition structure). The transition structure of a state diagram T is a set
of transitions tr defined by 5-tuples (ss, Et, C,Eg, st), where

• ss ∈ S is the source state.
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• Et ⊆ E is the set of triggers, with E being the set of all events. Triggers are events that enable
the transition whenever they occur; note that only one event in Et needs to be available to
trigger the transition.

• C ⊆ S is the set of guards. As guards, we only consider references to diagram states. The
guards express that a transition is only enabled if all states in C are part of the current
configuration.

• Eg ⊆ E is the set of activities or generated events. These events are fired whenever the
transition is followed.

• st ∈ S is the target state.

When Et is a singleton set {e}, we sometimes write e instead of {e}, likewise for Eg.
In this description of transitions we have already significantly limited the state machine dia-

grams that we formalize. We only allow transitions to proper states, and not pseudo-states, we
do not allow compound transitions. The guards are limited to whether a given state is current or
not, and we only allow generating trigger events, instead of arbitrary activities.

Example 13.1.5. Recall the state machine diagram from Figure 13.1. This state machine diagram
has the following transitions:

• (S1, e1, ∅, e2,S2)
• (S2, e4, ∅, ∅,S6)
• (S3, e2, ∅, e4,S3)
• (S4, e2, ∅, e4,S5)
• (S5, e3, ∅, e4,S4)
• (S6, e2, ∅, ∅,S2)
• (S7, e1, ∅, e2,S7)

A state machine is now described as D = (S, T ).

13.2 State machine diagram semantics

We now proceed by describing the behavior of a state machine diagram when it is executed. In
this section fix a state machine diagram D = (S, T ), where S = (S, type, chld, initial).

13.2.1 States

The current system state is described by a combination of states, at most one per hierarchical
level. In Chapter 6 we have already seen that such combinations are called state configurations,
or configurations, for short. In that chapter, we used configurations informally. Here we formalize
this notion.

Definition 13.2.1 (State configuration). For a given state s ∈ S, a set of states conf ⊆ desc(s)
is a state configuration w.r.t. s if:

• s ∈ conf, i.e., s is in all configurations rooted at s;
• ∀s′ ∈ conf.type(s′) = Or =⇒ ∃s′′ ∈ S.chld(s′) ∩ conf = {s′′}, i.e., for every or-state, exactly
one child is part of the configuration; and

• ∀s′ ∈ conf.type(s′) = And ⇐⇒ chld(s′) ⊆ conf, i.e., for every and-state, all children (the
regions) are part of the configuration.

Example 13.2.1. Recall the state machine diagram from Figure 13.1, the set {S2,R1,R2,S3,S4}
would constitute a valid configuration. However, the set {S2,R1,S3} would not, since all children
of and-state S2 must be part of a configuration of which S2 is part.

The operational state of a state machine diagram not only involves the current configuration,
it also requires recording the available events. The UML standard for this prescribes the presence
of an event pool, to which the environment can add events, and from which a scheduler dispatches
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one event at a time. The event that is dispatched is completely processed by the state machine
diagram, before a next event can be dispatched. This is called run-to-completion semantics. The
standard does not formalize exactly how this event pool mechanism works, and how dispatching
is done. In practice, it is likely that the event pool is implemented as a queue with a scheduler
that dispatches the next event. Here we choose an abstraction which allows the environment to
add an arbitrary set of events to the event pool at any time, and that an arbitrary event that is
currently in the event pool can be dispatched.1 Events that appear as activities will be added to
this event pool as well.

A situation in the semantics of a state machine diagram now is a configuration, along with the
events that are currently in the event pool.

Definition 13.2.2 (Situation). A situation is a pair st = (conf ,Ev), where conf is a configuration
w.r.t. the root and Ev is a set of events, representing the event pool.

13.2.2 Transitions

From a given situation (conf,Ev), an event e ∈ Ev can be dispatched. This results in a new
situation (conf,Ev \ {e}), with dispatched event e (so we remember the dispatched event). This
event can enable a number of transitions.

Definition 13.2.3 (Enabled transitions). Transition tr = (ss, Et, C,Eg, st) is enabled at situation
(conf,Ev) with dispatched event e if and only if

• ss ∈ conf, i.e., the source state is in the current configuration;
• e ∈ Et, i.e., the dispatched event is a trigger of the transition; and
• C ⊆ conf, i.e., the guard is satisfied.

Given state machine diagram D = (S, T ), situation st, and triggered event e, we use enabled(st, e)
to denote the set of all enabled transitions.

It is possible for more than one transition to be enabled at the same time within a state machine
diagram. Some of these transitions can fire at the same time, others are conflicting. Transitions
are conflicting if the set of states they exit overlap. To calculate the set of states that a transition
exits, we first define its scope.

Definition 13.2.4 (Transition scope). Given a transition tr = (ss, Et, C,Eg, st), its scope is
defined as follows:

scope(tr) = lcsoa({ss, st}).

The scope of a transition is the least common or-ancestor of the source and target state of
the transition, i.e., it is the deepest or-state that contains both the source and the target of the
transition.2

Example 13.2.2. Reconsider the state machine diagram from Figure 13.1. We have:

scope((S1, e1, ∅, e2,S2)) = root scope((S3, e2, ∅, e4,S3)) = R1

scope((S4, e2, ∅, e4,S5)) = R2 scope((S2, e4, ∅, ∅,S6)) = root

The exit set of a transition tr is the part of the current situation that is left when following
tr. This set contains all states strictly contained in the scope of the transition that are ancestors
of the source state.

To compute this, we first determine the unique exit state of the transition, which is the child
of the scope of the transition that is also an ancestor of the source state. Given a configuration,
the exit set contains all states in the configuration that are descendants of the unique exit state.
Formally this is defined as follows.

1The event pool and the exact way it is handled is one of the variation points that the UML standard allows.
Different tools may here make different choices.

2Note that whenever the source and target state of a transition are different, the least common strict or-ancestor
of the source and target state is the same as the least common or-ancestor. However, for self-loops, i.e., the source
and target state coincide, we need a strict ancestor to obtain a proper definition of unique exit state.
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Definition 13.2.5 (Exit set of a transition). Let tr = (ss, Et, C,Eg, st) be a transition. The unique
exit state of tr, denoted UExt(tr) is the single state s ∈ S such that s ∈ anc(ss) ∩ chld(scope(tr)).

The exit set of tr, given configuration conf is defined as

Ext(tr, conf) = conf ∩ desc(UExt(tr)).

Example 13.2.3. Again consider Figure 13.1. Consider transition tr = (S4, e2, ∅, e4,S5). The
unique exit state of the transition is S4, since S4 is both an ancestor of itself and a child of R2, the
scope of the transition. Given configuration conf = {root,S2,R1,S3,R2,S4}, Ext(tr, conf) = {S4},
since anc(S4) = {root,S2,R2,S4}, and chld(R2) = {S4,S5}.

The unique exit state of the transition tr1 = (S3, e2, ∅, e4,S3) is S3, and for the same configu-
ration conf, we have Ext(tr1, conf) = {S3}.

We can now formally define when two transitions are conflicting.

Definition 13.2.6 (Conflicting transitions). Given configuration conf, transitions tr1 and tr2 are
conflicting if and only if Ext(tr1, conf) ∩ Ext(tr2, conf) ̸= ∅.

When a transition is fired, the set of states that is entered in the new configuration that is
reached is defined in a similar way, using a unique enter state.

Definition 13.2.7 (Enter set). Let tr = (ss, Et, C,Eg, st) be a transition. The unique enter state
of tr, denoted UEnt(tr), is the single state s ∈ S such that s ∈ anc(st) ∩ chld(scope(tr)).

The enter set of tr, denoted Ent(tr), is a (sub)configuration with respect to UEnt(tr) that is
such that st ∈ Ent(tr), and for all s ∈ Ent(tr) \ anc(st), we have initial(s).

In other words, the enter set of tr is the set of states that we enter when following transition
tr. Whenever the target state of a transition does not provide us a particular new basic-state, we
enter the default state(s) of a reached and- or or-state. Note that we do not have to consider the
ancestors of st, since the definition of configuration forces some of these states to be part of the
enter set.

Example 13.2.4. Again consider Figure 13.1 with transition tr = (S4, e2, ∅, e4,S5). The unique
enter state of the transition is S5, since S5 is an ancestor of itself and a child of R2, the scope of
the transition. The enter set of the transition, Ent(tr), is {S5}, since this is a basic-state.

Example 13.2.5. Again consider Figure 13.1. We focus on the transition tr = (S2, e4, ∅, ∅,S6).
The unique exit state of the transition is S2, the unique enter state is S6. Given configuration
conf = {root,S2,R1,S3,R2,S4}, Ext(tr, conf) = {S2,R1,S3,R2,S4}, i.e., S2 and all descendants of
S2 that are part of the current configuration. The enter set of the transition, Ent(tr), is {S6,S7},
that is, the set consisting of the target state of the transition, S6, plus the initial states contained
in S6.

Exercise 13.1 Consider the UML state machine diagram in Figure 13.2. This is the same state
machine as in Exercise 6.4, where we determined the types of some of the states, and all its
configurations. Note that the transition c[S2] has S2 as guard

1. List all transitions in the state machine diagram.

2. For each of the transitions in the state machine diagram, give their scope.

3. For each of the transitions in the state machine diagram, give a configuration and trigger
event that enable the transition, and with respect to then configuration, give the unique
exit state, the exit set, the unique enter state, and the enter set of the transition.

4. Suppose the state machine is in configuration {Q,U,S,T,S2,T1}, with dispatched event c.
Are there any conflicting transitions? Explain why (not).

Exercise 13.2 Consider the UML state machine diagram in Figure 13.3. Note that, e.g., the
transition labelled d[S1] has S1 as guard, and e[S1,T2] has both S1 and T2 as guard.
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Figure 13.2: A state machine diagram.
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Figure 13.3: Another state machine diagram.

1. Determine the scope of the transitions labelled a, c/d, d/e and e[S2]/f in this state machine
diagram.

2. For each of the above transitions, give a situation with a dispatched event in which it is
enabled, and with respect to that situation, define the exit and enter set of the transition.

13.2.3 Calculating transitions

The UML standard gives some guidance on how to deal with conflicting transitions. For example,
when two transitions tr1 = (ss,1, Et,1, C1, Eg,1, st,1) and tr2 = (ss,2, Et,2, C2, Eg,2, st,2) are both
enabled, and ss,1 ∈ sdesc(ss,2), then tr1 gets priority, and tr2 is not executed. Otherwise, there is
no priority relation between the two.

We call all transitions that are not overridden by a transition with higher priority fireable.
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Definition 13.2.8 (Fireable transitions). Transition tr = (ss, Et, C,Eg, st) is fireable at sit-
uation st = (conf,Ev) with dispatched event e if and only if tr ∈ enabled(st, e) and for all
tr′ = (s′s, E

′
t, C

′, E′
g, s

′
t) such that tr′ ∈ enabled(st, e), we have s′s ̸∈ sdesc(ss).

We refer to the set of fireable transitions at situation st with dispatched event e as fireable(st, e).

Even though selecting only the fireable transitions resolves part of the conflicts, there can still
be conflicts in the set of fireable transitions. An actual transition in the semantics consists of
executing a maximal conflict-free subset of fireable transitions.

Definition 13.2.9 (Maximal micro-step). Given situation st = (conf,Ev) with dispatched event
e, a maximal micro-step MMS(st, e) ⊆ fireable(st) is a set such that:

• for all transitions tr1, tr2 ∈ MMS(st, e), if tr1 ̸= tr2, then tr1 and tr2 do not conflict, and
• for all transitions tr1 ∈ fireable(st, e) \MMS(st, e) there exists a transition tr2 ∈ MMS(st, e)
such that tr1 and tr2 conflict.

Example 13.2.6. Consider ({S2,S3,S4}, {e4}) as the situation of Figure 13.1, with dispatched
event e2. Note that the transition from S3 to S3 and the transition from S4 to S5 are enabled.
Furthermore, both transitions are non-conflicting, since their exit sets are {S3} and {S4}, respec-
tively. This means that both transitions are fireable, and together they form a maximal set of
micro-steps.

Exercise 13.3 Consider the UML state machine diagram in Figure 13.3.
For each of the following situations, with dispatched events, calculate the set of all enabled

transitions. Give the exit and enter set of each enabled transition. Indicate which transitions
are not fireable (if any). Calculate maximal micro-steps for the situations and calculate the
configuration that is reached after taking each MMS from its corresponding situation.

1. ({P,P1}, {a}) with dispatched event b.

2. ({P,P1}, {b}) with dispatched event a.

3. ({Q,U,S,T,S1,T1}, ∅) with dispatched event d

4. ({Q,U,S,T,S2,T2}, ∅) with dispatched event e

13.2.4 Labelled transition system of a state machine diagram

A maximal micro-step contains all transitions that should be executed as part of handling one
event. In the general case, where activities are taken into account, the transitions are executed
as part of a more complex compound transition, in which the transitions can be executed in any
order. Since we restrict the syntax of state machine diagrams and do not support activities in
general, and the order in which the transitions are executed is immaterial, we choose to execute
all transitions in a maximal micro-step simultaneously.

Now, we have all the ingredients necessary to define an LTS for a state machine diagram. We
refer to the state machine diagram as D = (S, T ), and to its LTS as TD = (S,Act ,→, I). This
LTS can be used to describe the behavior of state diagram D as a reaction to the triggers provided
by an environment and by transitions fired by itself.

Definition 13.2.10 (LTS for a state machine diagram). Let D = (S, T ) be a state machine
diagram. We construct its LTS TD = (S,Act ,→, I) as follows:

• I = {si}, the initial situation, where si = (conf0, {}), such that ∀s ∈ conf0.initial(s).
• S = Se ∪ St ∪ SD, where Se, St and SD are pairwise disjoint; Se is the set of environment
situations (also containing the set I) in which new events can be added; St is the set of
trigger situations, in which the environment dispatches a particular event; and SD is the set
of state diagram situations.

• Act consists of all subsets of the events E of D, the set of event E , plus all combinations of
such subsets E, E′ in the form E/E′, i.e., Act = 2E ∪ E ∪ {E/E′ | E,E′ ∈ 2E};



13.2. STATE MACHINE DIAGRAM SEMANTICS 107

({S1}, ∅)

({S1}, {e1})

({S1}, ∅, e1)

({S2,R1,R2, S3, S4}, {e2})

({S2,R1,R2, S3, S4}, {e2})

({S2,R1,R2, S3, S4}, ∅, e2)

({S2,R1,R2, S3, S5}, {e4})

({S2,R1,R2, S3, S5}, {e4})

({S2,R1,R2, S3, S5}, ∅, e4)

({S6}, ∅)

{e1} e1 e1/{e2} ∅ e2

e2/{e4}

∅e4e4/∅

Figure 13.4: LTS for the state machine diagram in Figure 13.1, where the environment initially
delivers event e1, and subsequently does not add any events. State names are shown above/below
the states.

• → is the set of transitions consisting of three (disjoint) sets of transitions →e, →t and →D.
These sets are defined as follows:

– →e⊆ Se × 2E × St is the set of transitions by which the environment adds events;
transitions in this set are of the form:

(conf, E)
E′

−→ (conf, E ∪ E′)

, where E and E′ are subsets of E .
– →t⊆ St × E × SD is the set of transitions by which the scheduler dispatches an event.

These transitions are of the form:

(conf, E)
e−→ (conf, E \ {e}, e)

, where e ∈ E.
– →D⊆ SD × E × 2E × Se is the set of transitions by which the state diagram reacts. A

transition of the form

(conf, E, e)
e/E1−−−→ (conf′, E′)

is in →D if and only if either:

∗ in situation (conf, E) with dispatched event e, a maximal micro-step, denoted
MMS((conf, E), e), exists. It consists of state diagram transitions {tr0, . . . , trn},
with the union of activities E1, conf

′ = conf\ (Ext(tr0, conf)∪ . . .∪Ext(trn, conf))∪
(Ent(tr0) ∪ . . . ∪ Ent(trn)), and E

′ = E ∪ E1, or
∗ in situation (conf, E) with dispatched event e, MMS((conf, E), e) = ∅, and conf =
conf′, E = E′, and E1 = ∅, i.e., the dispatched event is consumed and the state is
unchanged.

In general, the LTS corresponding to a state machine diagram becomes large due to the uncon-
trolled nature of the events provided by the environment, and the non-deterministic dispatching
of them. In exercises and examples we therefore typically provide a sequence of (sets of) events
provided by the environment, and only present the corresponding prefix of the labelled transition
system (essentially continuing the LTS until there are no more events to be dispatched).

Example 13.2.7. Recall the state machine diagram from Figure 13.1, and suppose the environment
initially provides the event e1, after which it does not provide any more events. The corresponding
prefix of the LTS is shown in Figure 13.4.

We have indicated the initial state (the one at the top left) with an incoming arrow-head. Since
root is trivially part of every configuration, we have excluded it from the listed configurations.

Exercise 13.4 Consider the UML state machine diagram in Figure 13.3. Suppose the environment
provides its triggers in the following steps: {b}, {c}, and subsequently does not provide new
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triggers. Draw the corresponding part of the labelled transition system for the state machine
diagram. Your solution to Exercise 13.3 may be helpful in solving this exercise.

13.3 Conclusion

In this chapter we have shown how the semantics of a subset of state machine diagrams can be
formalized using labelled transition systems. Having such formal semantics helps to unambigu-
ously design system behavior and reason about that behavior. The formalization also shows that
there are many subtleties in the UML standard, even for the small subset considered in this chap-
ter. When adding additional features such as history variables as well activities, things become
even more involved. In particular, we cannot execute all non-conflicting transitions at once, but
instead we need to execute them one after another, in an arbitrary order using run-to-completion
semantics. Since the UML standard is (sometimes intentionally) vague in many places, there have
been many different attempts at formalizing UML state machine diagrams. There are many subtle
differences between the different formalizations. The interested reader is referred to, e.g., Lilius
and Paltor (1999) for more complete formalizations of state machine diagrams.



Chapter 14

Model-Based Testing with LTSs

In this chapter, we describe a theory for model-based testing. The theory we study is called ioco,
for input-output conformance. Models, test cases, and implementations are all represented by
Labelled Transition Systems. It is formally defined when an implementation is considered “valid”,
i.e., it conforms to its specification. Furthermore, we give an algorithm to automatically derive
and execute test-cases from specifications.

This theory has been described in great detail in Tretmans (2008). The paper is available via
Canvas, and you need to be in the TU/e network in order to download its PDF. Since it is an
excellent source for the theory, in this chapter we guide you through the paper, instead of giving
the full details. We will repeat the most important definitions in this chapter.

We will often ask you to read a specific part of Tretmans (2008) first. In fact, the sections in
this chapter follow the sections from Tretmans (2008).

Some of the exercises in this chapter have been taken from the material of the course “System
Verification & Testing” at the Open University.1

At the end of this chapter, you can

• give an informal description of model-based testing;
• informally describe the main components of the model-based testing framework;
• explain the intuition behind quiescence;
• apply the formal definition of quiescence;
• explain the intuition behind ioco;
• give the formal definition of ioco;
• apply ioco on small examples;
• reason about important properties of ioco;
• discuss weaknesses and variations of ioco.

14.1 Introduction

Read section 1 of Tretmans (2008)

Model-based testing is a formal testing approach, in which a formal model is used to represent
the behavior of the implementation under test (IUT). While treating the IUT as a black-box,
i.e., we cannot observe the implementation details, we want to establish the IUT conforms to its
specification.

14.2 Formal Testing

Read section 2 of Tretmans (2008)

1The exercises for the Open University course were originally created by Jeroen Keiren.
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In this course, we are introducing a formal approach to model-based testing. From the spec-
ification, test cases are generated, that are executed on the implementation. Formally, an IUT
conforms to the specification if and only if it passes all tests that can be generated from the
specification.

In order to understand this, we need to ask ourselves what it means for an IUT to conform
to the specification. In this case, we consider input-output conformance (ioco), in which the
specification, the IUT, and the test cases are described as labelled transition systems. In the
ioco theory, it is formalized what exactly it means for the IUT to conform to its specification.
Intuitively, it is that after every (weak) trace allowed by the specification, the outputs produced
by the implementation are admitted by the specification.

Input-output conformance testing is a black-box approach to testing, which means we do not
assume any knowledge about the IUT, except for its interface. However, in order to use this
approach we need to make the following assumption: the IUT can be described as a labelled
transition system (even though we do not need explicit access to this LTS). This assumption is
also called the test assumption g.

14.3 Models

As stated before, in model-based testing the specification, the implementation and the test cases
are described using labelled transitions systems. Note that the definition given in Tretmans (2008)
differs slightly from the definition given in Chapter 12.

In particular, Tretmans (2008) uses Q for the set of states (we used S before), the action labels
are described using L (we used Act before;), and its initial state is denoted q0. Be aware of these
differences when studying the paper.

Now go ahead and read section 3 of Tretmans (2008). You can skip section 3.2, and for now you
can skip section 3.5, to which we will return later.

14.3.1 Labelled Transition Systems

In general, the notation introduced in this section corresponds to the notation we introduced in
Chapter 12. For example, the notation extending the transition relation to traces and weak traces
is the same. Be careful in Definition 5.2, the traces that Tretmans (2008) defined here are, in
fact, our weak traces, which we can see from the use of the double arrow notation (=⇒). Also, the
paper uses der to denote the set of reachable states, where we previously introduced Reach.

The important new part of (Tretmans, 2008, Definition 5) is Definition 5.5.

Definition 14.3.1 ((Tretmans, 2008, Definition 5.5)). Let (Q,L, T, q0) be an LTS. Let P ⊆ Q,
and A ⊆ L.

P refuses A = ∃p ∈ P.∀µ ∈ A ∪ {τ}.p ̸ µ−→

In other words, P refuses A, if there is a state p in P that cannot do any of the actions in A, nor
can it take an internal transition.

Exercise 14.1 Consider the LTSs in Figure 2 on page 8 of Tretmans (2008). Give the following
sets:

1. traces(q)

2. r0 after but

3. r0 after but · but
4. v0 after but

5. v0 after but · but

Exercise 14.2 Consider the LTSs in Figure 2 on page 8 of Tretmans (2008). For each of the
following predicates, state whether it is true or false.
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1. r0 after but refuses {liq}
2. r0 after but · but refuses {choc}
3. r0 after but refuses {liq , but}
4. v0 after but refuses {liq}

14.3.2 LTSs with inputs and outputs

Testing involves a tester sending inputs to an IUT and then the tester observes the outputs
produced by the IUT and decides a verdict, pass or fail. We need to extend LTSs with the notions
of inputs and outputs. Inputs are actions initiated by the environment of a system; outputs are
initiated by the system itself. In other words, inputs are controlled by the environment; the system
reacts to them. Outputs are controlled by the system; the environment reacts to them.

We recall the definition of labelled transition system with inputs and outputs (Tretmans, 2008,
Definition 6) as an LTS where the set of action labels is partitioned into a set of inputs – notation
LI – and a set of outputs – notation LU .

2

Definition 14.3.2. An LTS with inputs and outputs is a 5-tuple (Q,LI , LU , T, q0) where:

• (Q,LI ∪ LU , T, q0) is an LTS;
• LI and LU are countable sets of input labels and output labels, respectively, which are
disjoint: LI ∩ LU = ∅.

We sometimes write L for LI ∪ LU .

We can reinterpret the LTSs from (Tretmans, 2008, Figure 2) as LTSs with inputs and outputs,
by defining LI = {but} and LU = {liq , choc}. Using the convention that inputs are prefixed with
‘?’ and outputs are prefixed with ‘!’ we typically draw them as shown in Figure 14.1.

p0

p

p1

p2

?but

!liq

q0

q

q1

q2 q3

?but

!liq !choc

r0

r

r1 r2

r3 r4

r5

?but ?but

!liq ?but

!choc

u0

u

u1

?but!liq !choc

v0

v

v1

?but!liq τ

Figure 14.1: LTSs from (Tretmans, 2008, Figure 2) reinterpreted as LTSs with inputs and outputs
using LI = {but} and LU = {liq , choc}

14.3.3 Input-Output Transition Systems

The previous definition does not differ much from the definition of LTSs. In the theory, we need to
identify systems that never refuse inputs. In the ioco theory, we will assume that implementations
can be represented by such systems. The conceptual idea is that an IUT is always prepared to
accept any input, that is, all inputs are enabled in all states. Essentially, this assumption requires
the implementation to explicitly specify how to handle invalid inputs, which is a good defensive
programming strategy by itself.

2The ’U’ comes from ”uitvoer”, the Dutch word for output. It is preferred to avoid confusion between LO (letter
’O’) and L0 (digit ’0’).
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Definition 14.3.3 ((Tretmans, 2008, Definition 7)). An input-output transition system (IOTS)
is a labelled transition system with inputs and outputs (Q,LI , LU , T, q0) where all input actions
are enabled in all reachable states:

∀q ∈ der(q0).∀a ∈ LI : q
a

==⇒

There are many ways to make systems input enabled. A solution is to add to each state a
self-loop with the input labels that are not accepted in that state. This is sometimes referred to
as Angelic Completion. Another way is to add a special error state and add transitions to this
error state for all non-specified inputs. This is sometimes referred to as Demonic Completion.

Exercise 14.3 Consider the LTSs with inputs and outputs from Figure 14.1. Which of these
LTSs is/are IOTSs?

14.3.4 Quiescence and suspension traces

In order to define the quiescence relation, we need to extend the kinds of observations we can do
in a labelled transition system. In particular, we need to be able to observe whether an LTS can
proceed autonomously, without accepting an input from the environment. Essentially, this is the
case when the system can do an output in the current state.

A state in which the system is completely idle and will not make any more progress without
receiving an input first is called quiescent. A quiescent state q is denoted as δ(q), which is defined
as follows:

Definition 14.3.4 ((Tretmans, 2008, Definition 8)). A state q of an LTS p is quiescent, denoted

by δ(q) if and only if ∀µ ∈ LU ∪ {τ} : q ̸ µ−→.

It is important to notice that quiescence includes the impossibility to perform internal actions.
In practice, this means that such a stable state of the IUT is observable.

Exercise 14.4 Consider the LTSs with inputs and outputs from Figure 14.1. Which states in
these LTSs are quiescent?

Since we assume that quiescence is observable, we extend LTSs with the action δ (Lδ), for
quiescence, and add transitions showing quiescence in the LTS. We call such an extended LTS
a suspension automaton. The suspension traces (STraces) are then defined as the traces of the
suspension automaton.

Definition 14.3.5 ((Tretmans, 2008, Definition 9)). Let p = (Q,LI , LU , T, q0) be an LTS with
inputs and outputs. Recall that L = LI ∪ LU . We write Lδ = L ∪ {δ}.

1. The suspension automaton for p is pδ = (Q,LI , LU ∪ {δ}, T ∪ Tδ, q0), where Tδ = {q δ−→
q | q ∈ Q ∧ δ(q)}

2. The suspension traces of p are STraces(p) = {σ ∈ L∗
δ | pδ

σ
==⇒}

Note that in this definition, the suspension traces of p are defined to be the traces of pδ. Note
that pδ denotes the suspension automaton, Lδ is the set of action labels extended with δ, and Tδ
is the extended transition relation.

Exercise 14.5 Consider the LTS with inputs and outputs r from Figure 14.1. Give the set of
suspension traces STraces(r).

14.4 Formal conformance relation

Conformance defines when an IUT meets a specification. It is therefore a relation between two
entities: the implementation and the specification. In ioco, conformance is expressed as a subset
relation between the outputs possibly produced by the implementation and the outputs possibly
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s1 s2

s3 s4

?but ?but
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!choc
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t0
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t3 t4

?but ?but
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τ

?but ?but
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Figure 14.2: LTS with inputs and outputs s (left), and IOTS t (right), where LI = {?but}, and
LU = {!liq , !choc}

produced by the specification. We check this relation in all states reached after all traces in a set
of traces. To express the conformance relation we need to define the following:

1. the set of suspension traces, that is, the observable behavior;
2. the set of states reached after performing a trace;
3. the set of outputs, that is, the visible behaviors on which conformance is checked;
4. the relation between two sets of outputs.

Read the introduction to section 4, and read section 4.1 in Tretmans (2008).

14.4.1 Output set

The first element of the formal ioco relation is the out-set. This is the union of all output actions
together with the quiescence action. The second part of the definition generalizes the out-set to
sets of states. In the way in which the out-set is used in the ioco definition, this second part is to
deal with non-determinism.

Definition 14.4.1. Let q be a state in a transition system. Let Q be a set of states. We define:

1. out(q) = {x ∈ LU | q x−−→} ∪ {δ | δ(q)}
2. out(Q) =

⋃
{out(q) | q ∈ Q}

Exercise 14.6 Consider the LTSs in Figure 14.2. Determine the following out-sets.

1. out(s0)

2. out(s1)

3. out(s2)

4. out(s3)

5. out({s0, s1})
6. out({s1, s2})
7. out({s1, s2, s3})
8. out({t0} after ?but)

9. out({t0} after ?but · ?but)
10. out({t0} after ?but · δ)
11. out({t0} after ?but · !choc)

14.4.2 The ioco conformance relation

The intuition behind ioco is to check that any output produced by the implementation has been
foreseen by the specification. This intuition is formally expressed by a subset relation. The set of
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outputs produced by the implementation i must be a subset of the set of outputs produced by the
specification s. This must hold for all states reachable over all possible suspension traces of the
specification. Formally, we have the following definition:

Definition 14.4.2 ((Tretmans, 2008, Definition 12)). Given a set of inputs LI and a set of outputs
LU , the relation ioco is defined as follows:

i ioco s⇔ ∀σ ∈ STraces(s) : out( i after σ) ⊆ out( s after σ)

Exercise 14.7 Consider the LTSs from Figure 14.2, and use s as specification and t as implemen-
tation. Does the implementation conform to the specification, according to the ioco definition?
Motivate your answer.

i0

i

i1

i2

i3

?but1 ?but2

?but1 , ?but2

!liq

?but1 , ?but2 ?but2

?but1 , ?but2

s0

s

s1

s2

?but2

?but1

!liq

?but2

Figure 14.3: LTSs of implementation i and specification s. Input alphabet LI = {?but1 , ?but2}.
Output alphabet LU = {!liq}

Exercise 14.8 Figure 14.3 shows an IOTS i as implementation, and an LTS with inputs and
outputs s as specification.

Does the implementation i conform to the specification s, according to the ioco definition?
Argue your answer.

14.4.3 Generalization

In general, the specification used in ioco-testing is a partial specification. This is due to two
reasons: first, the ioco-definition only requires the out-sets of the implementation to be included
in the out-sets of the specification; second, the definition only considers the suspension traces from
the specification.

By changing the sets of traces considered by the specification, we can obtain variations of ioco.
In order to do this, we can make the set of traces the definition considers a parameter, say F . We
will use this parameter in the next section about underspecified traces.

Definition 14.4.3 ((Tretmans, 2008, Definition 13)). Let F ⊆ (LI ∪ LU ∪ {δ})∗ be a set of
suspension traces, i an IOTS and s an LTS with inputs and outputs.

i iocoF s ≡ ∀σ ∈ F .out(i after σ) ⊆ out(s after σ)

Note that when choosing F = STraces(s) in this definition, we recover the original definition of
ioco. There are several other options for choosing F , that all result in variations of ioco.

14.4.4 Underspecified traces and uioco

A particular form of underspecification arises when we consider suspension traces in non-deter-
ministic LTSs. This is caused by the fact that subtraces may end up in states in which their
continuation is not enabled. The paper Tretmans (2008) illustrates this using an example.

To overcome this, we can consider the set of UTraces, which is the set of suspension traces not
allowing for this kind of underspecification.
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Definition 14.4.4 ((Tretmans, 2008, Definition 15)). Let i be an Input-Output Transition System
over LI and LU and let s be an LTS with inputs and outputs over LI and LU .

1. UTraces(s) =def {σ ∈ STraces(s) | ∀σ1, σ2, a ∈ LI .
σ = σ1 · a · σ2 implies not s after σ1 refuses {a}}

2. i uioco s ≡ i iocoUTraces(s) s

Note that in this definition, σ = σ1 · a · σ2 splits up the suspension trace, and σ is only in the
set UTraces, if it is not the case that s after σ1 refuses {a}. Now, remember that s after σ1 is
the set of states reached after executing σ1. Furthermore, refuses is defined such that this set of
states we reach refuses {a} if and only if there is a state in this set that cannot do an a transition.
So, if a trace is in UTraces(s), for every possible partial execution of that trace starting in s, it is
possible to continue executing the trace.

14.4.5 Compositional testing

Ideally, when developing a large system, we would like to be able to test the components in isola-
tion, and from that infer that the system as a whole still satisfies the specification. Unfortunately,
for ioco, this is not the case: if i1 ioco s1 and i2 ioco s2, this does not mean that the imple-
mentation in which i1 and i2 communicate ioco conforms to the specification in which s1 and s2
communicate. In Tretmans (2008) an example of this is shown. Note that, when the specification
is input-enabled (i.e. it is a IOTS instead of an LTS with inputs and outputs), compositional
testing can safely be applied.

14.5 Test cases and test generation

So far, we have defined the ioco relation on pairs of LTSs. Recall, however, that we want to use
ioco as a black-box testing approach, so we do not have the details of the implementation. We
will, therefore, use the specification to generate test cases, and describe how to execute those test
cases on the implementation.

14.5.1 Test cases

Read section 3.5 in Tretmans (2008).

Test cases are described using test transition systems (TTSs), which are LTSs with a very specific
structure. In particular, a test case is always finite-state and deterministic, and it has a tree-
structure that ends in leaves that are either pass or fail. Furthermore, it is important to observe
that, when the specification from which the test case is generated has inputs LI , and outputs LU ,
the test case will swap these, and use LU for inputs, and LI for outputs (in the presentation of
the test cases, we will write ?o for o ∈ LU , and !i for i ∈ LI). The intuition is that the test case
will actually provide inputs to the IUT, and observe outputs from the IUT.

Every state q in the test case has the following possibilities:

• either, it provides exactly input a ∈ LI to the IUT, and it specifies how to deal with all
outputs in LU that the IUT could produce, or

• it specifies for all outputs LU that the IUT could produce how the test proceeds, and it
observes quiescence, and checks whether that is allowed.

For a formal definition of test cases, check (Tretmans, 2008, Definition 10). Note that the special
action θ is used to detect quiescence.

Exercise 14.9 Assume that we have a specification with LI = {?but} and LU = {!liq , !choc}.
Figure 14.4 shows four LTSs with inputs and outputs.

1. For each of the LTSs in Figure 14.4 indicate whether it is a TTS. In other words, does it
satisfy the requirements of test cases. If not, argue your answer.
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Figure 14.4: Four LTSs with inputs and outputs with LI = {?but}, LU = {!choc, !liq}

2. Suppose that we remove the transition p0
!choc−−−→ p3 from the LTS for p in the figure. Is the

result a TTS? Why (not)?

3. Suppose that we remove the transition p1
!liq−−→ p4 from the LTS for p in the figure. Is the

result a TTS? Why (not)?

14.5.2 Test execution

Read the introduction to section 5, and read section 5.1 in Tretmans (2008).

Tests are executed by running the test case and the IUT in parallel. This is described using
a variation of the parallel composition operator: t⌉|i denotes the test case t and implementation
i running in parallel. Note that the parallel composition is similar to the parallel composition
that we have discussed in Chapter 12. In this case, synchronization happens on all labels in
L = LI ∪ LU , and the labels δ and θ also synchronize.

Test execution is formally defined in (Tretmans, 2008, Definition 16). Note that it uses three
inference rules for defining the test execution. It uses the more abstract notation t⌉|i for the
parallel composition of test t and implementation i, assuming that t and i are described more
abstractly as processes instead of as LTSs.

The first rule defines how internal transitions of the implementation are executed.

i
τ−→ i′

t⌉|i τ−→ t⌉|i′

The implementation simply executes the internal transition, and updates its state locally. Note
that specifications do not have internal transitions, so a similar rule for specifications is not needed.
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The second rule defines the synchronization of the test case and the IUT on an action a. Note
that action a can either be input or output.

t
a−→ t′, i

a−→ i′

t⌉|i a−→ t′⌉|i′

This simply says that when both components can perform a, the composition can also do a.
The third rule specifies the synchronization between test case and IUT in case quiescence is

observed.

t
θ−→ t′, i

δ−→ i′

t⌉|i θ−→ t′⌉|i′

It is essentially the same as the previous one, but we deal with the special status of the actions δ
and θ.

A test run of t with i is a trace of t⌉|i terminating in a verdict pass or fail of t (see (Tretmans,
2008, Definition 16.2)). Implementation i passes test case t if all test runs go to a pass-state of t
(see (Tretmans, 2008, Definition 16.3)). An implementation i passes a test suite T if it passes all
test cases in T (see (Tretmans, 2008, Definition 16.4)).

Exercise 14.10 Consider the following test case t, and implementation i.
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!choc

Give all possible test runs of the test case with the implementation.

14.5.3 Test generation

Read section 5.2 in Tretmans (2008).

The test case generation algorithm described in (Tretmans, 2008, Algorithm 1) generates test cases
as follows. It considers a leaf in the test case completed if it is either pass or fail. If a leaf is not
completed, the test case is extended at the leaf in one of three ways:

1. either it stops with a verdict pass, since no error has been found so far, or
2. it sends an input to the IUT and listens for outputs from the IUT (note that quiescence is

not checked in this case); outputs that are invalid lead to a fail verdict, other outputs lead
to uncompleted leaves, or

3. it listens for outputs from the IUT and detects quiescence; again invalid outputs (and qui-
escence if the state in the specification is not quiescent) lead to a fail verdict, other outputs
lead to uncompleted leaves.

Exercise 14.11 Consider the LTS with inputs and outputs from Figure 14.5. Use the ioco
test-generation algorithm to derive a test case that contains at least !, ?, θ, pass, and fail.

Exercise 14.12 Consider the LTS with inputs and outputs from Figure 14.6. Use the ioco
test-generation algorithm to derive a test case that contains at least !, ?, θ, pass, and fail.
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Figure 14.5: LTS with inputs and outputs where LI = {?but}, and LU = {!liq , !choc}
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Figure 14.6: LTS with inputs and outputs where LI = {?but}, and LU = {!liq , !choc}

14.5.4 Completeness of test generation

Read section 5.3 in Tretmans (2008).

Ideally, we want a test suite to be complete. This means that an IUT conforms to its specification
if and only if it passes all tests. We break down completeness into two different criteria, soundness
and exhaustiveness, such that the test case is complete whenever it is both sound and exhaustive.

A test suite T is sound if and only if, whenever the implementation conforms to the specifi-
cation, the implementation passes all tests in T . Intuitively, this means that a sound test suite
detects real errors. We can see this more clearly by looking at the contraposition of this state-
ment: if the implementation fails at least one test, then the implementation does not conform to
the specification.

A test suite T is exhaustive if and only if, whenever the implementation passes all tests in T ,
then the implementation conforms to the specification. It is easier to read this in contrapositive
form: if an IUT does not conform to the specification, then there is a test case in the test
suite that detects an error. An exhaustive test suite can, therefore, detect all errors in an IUT.
A formal definition of soundness, exhaustiveness and completeness is given in (Tretmans, 2008,
Definition 17).

An important property of the test generation algorithm described in Tretmans (2008) is that
it is complete. However, in general, for the test suite to be exhaustive, infinitely many test cases
are needed, so the algorithm will not always terminate. On the other hand, any subset of test
cases that can be constructed by applying the test generation algorithm is sound, and can thus
be used to generate a useable test suite.

14.6 Exercises

We conclude this chapter with some more complicated exercises.

Exercise 14.13 Consider the labelled transition system in Figure 14.7 specifying a coffee machine.
The label ?button is an input; !coffee, !espresso and !cappuccino are outputs.

In this exercise, we are investigating five implementations. The implementations are shown in
Figure 14.8.
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Figure 14.7: Specification (spec) of a simple coffee machine
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(a) Implementation 1 (impl1)
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Figure 14.8: Five implementations of a coffee machine
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1. For each of these five implementations, determine whether it is ioco-conforming w.r.t the
specification spec. Motivate your answer.

2. Make your own correct implementation that cannot give cappuccino. That is, make a new
implementation that is ioco-correct with respect to the specification in Figure 14.7 but
that cannot give cappuccino.

3. Make your own incorrect implementation that can produce coffee and espresso. That
is, make a new implementation that is ioco-incorrect with respect to the specification in
Figure 14.7 but that can produce coffee and espresso.

4. Derive a test suite (i.e., a set of test cases), using the ioco-test generation algorithm, that
can detect all the errors in the ioco-incorrect implementations from the first part of this
exercise. (Hint: you need to specify at most one test case generated by the algorithm for
each of the ioco-incorrect implementations. Some test cases may cover more than one
implementation.)

5. Explain in at most 5 short sentences what it means that your test cases/test suites are
sound w.r.t. to the ioco-relation.

6. Are your test cases/test suites sound w.r.t. to the ioco-relation? Why?

7. Explain in at most 5 short sentences what it means that your test cases/test suites are
exhaustive w.r.t. to the ioco-relation?

8. Are your test cases/test suites exhaustive w.r.t. to the ioco-relation? Why?
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s4s3s2

s7s6s5

s8

?but

!y

!g
!r

!g

!r !y !r !y

!g

!r

!g
!y

?but

Figure 14.9: Specification of a light system in which a button can be pushed (?but), and that can
flash red, yellow and green (!r, !y, !g).

Exercise 14.14 Consider a system with three colored lights (red, yellow, and green, denoted r,
y and g in the LTS) which can flash after a button has been pushed (denoted but). Each light
flashes exactly once after the button has been pushed, and after all three lights have flashed the
button can be pushed again to repeat the procedure. The order in which the lights flash is not
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Figure 14.10: Implementation of a light system

important. A specification of this system is given in Figure 14.9, which is a visualization of the
labelled transition system.

1. Consider the implementation model in Figure 14.10. Is the implementation iococonforming
to the specification in Figure 14.9? If yes, explain why. If not, what is wrong?

2. Give an LTS describing an implementation in which the lights always and only flash in the
order red, yellow, green.

3. Is the LTS you gave in part 2 of this exercise ioco-conforming to the specification in
Figure 14.9? Explain your answer.

4. Finally, give an implementation in which the button can be pushed again immediately after
any of the flashes, aborting the series of three flashes and starting a new series of three
flashes. Is this an ioco-conforming implementation of the system given in Figure 14.9?
Motivate your answer.

Exercise 14.15 Consider the vending machines that are given in Figure 14.11 as labelled tran-
sition systems, with LI = {EUR1 ,EUR2} and LU = {product , red , back}. The vending machine
accepts €1 and €2 coins and returns a product (action label product). The products can be sold-
out; in that case a red light turns on (action label red), and the money is returned (action label
back). In Figure 14.11 the specification of a vending machine spec is given, together with two
implementations i1 and i2.
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s0 s1

s2 s3

?eur2

?eur2 ?eur1!back
!product

!red

(a) Specification spec

i0 i1

i2 i3

?eur2

?eur1 ?eur1

?eur2

?eur2

?eur1

!product

!red

?eur1
?eur2

(b) Implementation i

j0 j1

j2 j3

?eur2

?eur1 ?eur1

?eur2!back

!back

?eur1

?eur2

!product

?eur1
?eur2

(c) Implementation j

Figure 14.11: Specification and two implementations of a vending machine

1. Which states of spec are quiescent?

2. Which of the implementations i and j are ioco-conforming to specification spec?

3. Of course products should only be delivered after payment. Make a test case using the
ioco-test generation algorithm, that tests whether an implementation in the starting state
cannot deliver products for free.

4. Make a test case using the ioco-test generation algorithm, that tests whether an imple-
mentation after inserting in total €3, indeed can deliver a product.

5. Give an ioco-conforming implementation that never delivers a product.

6. Give an implementation that is not ioco-conforming that can do the following: deliver a
product, turn red, return the money.

14.7 Conclusion

Read section 6 in Tretmans (2008).

In this chapter we described a formal approach to testing based on labelled transition systems
and the conformance relation ioco. Implementations are described as input-output transition
systems, specifications are described as labelled transition systems with inputs and outputs, and
test cases are described using test transition systems. We formally described the notion of ioco-
conformance. In essence, the possible outputs of the implementation are included in the possible
outputs of the specification, after executing any suspension trace from the specification. The test
generation algorithm described is complete.

In the next chapter we illustrate how ioco-based conformance testing can be extended to the
setting of timed systems.
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Appendix A

Solutions to exercises

Solution to Exercise 3.1

1. According to the syntax we should have for this requirement [Subject][Action][Object][Constraint
of Action]. So, we could reformulate the requirement as follows:

The system [Subject] shall process [Action] executing jobs [Object] at a load
of at least 40 simultaneous jobs [Constraint of Action].

2. The resource provider is an actor and should be mentioned in the attributes of the re-
quirement not in the requirement itself. A better formulation of the requirement is the
following:

The system [Subject] shall support [Action] the visualization of resource-project
relations [Object].

3. This requirement has the same issue as the previous requirement. A better formulation
would be:

The system [Subject] shall allow [Action] system administrator commands
[Object] on computers running Windows XP, Mac OS X, or Linux [Constraint].

Note that it could be argued whether the version of Mac OS X and Linux must be part of
the constraint.

4. In this requirement, it is not clear what ‘it’ refers to. Is it a resource or the system? We
should reformulate the requirement in such a way that this becomes clear, and that follows
syntax. We could, e.g., write:

If a resource that is executing a job disappears [Condition], the system [Sub-
ject] shall requeue [Action] the job that was executed by that resource [Object].

Solution to Exercise 3.2 For each requirement, the analysis follows.

1. “a standard computer” is vague. What is standard? Do you mean “every computer con-
nected to the CERN network”? Also the requirement is in the passive form.
The upgraded management system [Subject] shall give access [Action] of the information
stored in the database [Object] to all computers connected to the CERN network [Con-
straint].
The new formulation is verifiable.

2. The requirement is not about the management system, but about people giving car stickers.
A better formulation would be:
The upgraded management system [Subject] shall create [Action] car stickers [Object] only
for users with a valid CERN ID.

125
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However, it is hard to verify, because it seems that the check for a valid ID is made by a
person and not the system.

3. “Under normal conditions” is not precise enough. Also, 3-4 seconds is imprecise. A better
formulation would be:
The software [Subject] shall open [Action] in less than 4 seconds [Constraint of Action].

4. There is more than one requirement in this one. Also, they are not system centric. A better
formulation would be:

R1 The system [Subject] shall give access [Action] to a French-English dictionary [Object].
R2 The system [Subject] shall support [Action] email services [Object].

The rest of the description is part of the attributes of requirement [R2].

5. Requirements must not use “will”. Also, 24/7 is vague. A better formulation would be:
The system [Subject] shall run [Action] at a reliability level of 99,99% [Constraint of Action].
Someone should of course define “reliability level” here.

Solution to Exercise 3.3 We go through the rest of the text, and give some (maybe not all) of
the requirements for this system, and point out how we obtained them.

Popular titles are bought in multiple copies.
We can add the option for multiple copies:

R4 The system shall support the registration of multiple copies of titles.

Old books, and magazines are removed when they are out of date or on poor condition.
We can also add the “remove” features; we can wonder whether the titles or copies really need

to be removed from the system, or whether they just are not available any more. We here opt for
the latter.

R5 The system shall support marking titles as out of date.
R6 The system shall support marking copies to be in poor condition.
R7 When a title is marked out of date, the system should never mark available any its copies.
R8 When a copy is marked in poor condition, the system should never mark it as available.

The LIS should support two kinds of users: librarians and borrowers.
This is a clear requirement.

R9 The LIS system shall support users of two kinds: librarians and borrowers.

Librarians can create, update, and delete information about library titles and borrowers.
This means we now have more information about the actor of some of the requirements con-

structed before. Also, it becomes clear that titles and borrowers can be created, and their infor-
mation can be updated and deleted. We therefore split some of the requirements expressed earlier
and refine them.

R10 (Replaces R3) The librarian can create library titles.
R11 (Replaces R3) The librarian can modify information about library titles.
R12 (Replaces R3) The librarian can create borrowers.
R13 (Replaces R3) The librarian can modify information about borrowers.

R4v2 (Replaces R4) The librarian can register multiple copies of titles.
R5v2 (Replaces R5) The librarian can mark titles as out of date.
R6v2 (Replaces R6) The librarian can mark copies to be in poor condition.

Note that we have simply updated the version for some of the requirements, and replaced some
requirements by others. We always indicate which ones they replace for traceability.

They can also generate a report about borrowers and about titles in the LIS.

R14 The librarian can generate reports about library titles.
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R15 The librarian can generate reports about borrowers.

A borrower is a library user who can make a loan of a copy of a title that is part of the library
holdings. A borrower can also reserve a book or magazine that is not currently available in the
library, so that when it is returned or acquired by the library, that person is notified.

These are clear statements about the capabilities of borrowers.

R16 When a copy is available and not reserved, a borrower can create a loan.
R17 When a loan on a copy is created, the copy is marked unavailable.
R18 When a copy is not available and not reserved, a borrower can reserve the copy.
R19 When a copy that is reserved becomes available, the LIS system shall notify the reserving

borrower by e-mail.

The reservation is cancelled when the borrower checks out the book or magazine or through an
explicit cancelling procedure.

Two operations are described here, that both affect the title copy attributes. We split these in
two separate requirements.

R20 When a copy is available and reserved, the reserving borrower can create a loan on that
copy.

R21 When a loan on a reserved copy is created, the system removes the reservation on the item.
R22 When a copy is reserved, the reserving borrower can remove the reservation on the item.

Librarians and borrowers make requests and interact with the LIS through a library kiosk (a
computer interface).

This is a clear statement.

R23 The LIS system shall have a library kiosk computer interface through which all interactions
can be performed.

Loans and returns of library material are processed using an ID scanner.
This should be explicitly stated as a technical requirement of the LIS system.

R24 The LIS system shall provide an ID scanner to process loans and returns of a copy.

Solution to Exercise 3.4

• After being powered on, needs to be initialized at the zero position.

R3 (M) When inpInit is high, outReady is low, and inpAt0 is low [Condition], the system
[Subject] shall set [Action] the outMove0 bit [Object] within 1 ms [Constraint of
Action].

R4 (M) When inpAt0 is high, and outReady is low [Condition], the system [Subject]
shall set [Action] the outReady bit [Object] within 1 ms [Constraint of Action].

• After the system is initialized, the piston can be moved by sending a move to end or a move
to zero commands

R5 (M) When inpAt0 and outMove0 are high, the system shall unset the outMove0 bit
within 1 ms

R6 (M) When inpAt1 and outMove1 are high, the system shall unset the outMove1 bit
within 1 ms

R7 (M) When inpMove0 is high, inpAt0 is low, outReady is high, outMove0 is low, and
outMove1 is low, the system shall set the outMove0 bit within 1 ms

R8 (M) When inpMove1 is high, inpAt1 is low, outReady is high, outMove0 is low, and
outMove1 is low, the system shall set the outMove1 bit within 1 ms
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• The system has an emergency stop button. Once this button is pressed, the cylinder will
immediately stop moving. The emergency procedure will also re-initialize the cylinder to
the zero position.

R9 (M) When inpStop signal is received, the system shall unset the outReady bit within 1
ms.

R10 (M) When either outMove0 or outMove1 is high and outReady is low, the system shall
unset outMove0 and outMove1 within 1 ms.

• Consistency of the signals outMove0, outMove1 and outReady.

R11 (S) When either outMove0 or outMove1 is high and outReady is low, the system shall
unset outMove0 and outMove1 within 1 ms

Solution to Exercise 4.1

ProfessorTutor

supervise
exam

13

Solution to Exercise 4.2

1. False.

2. False.

3. True.

4. True.

Solution to Exercise 4.3

Department head

Staff
Cancel booking

Note that there should not be an association between department head and the use case; if this
association is there in addition to the one between staff and the use case, this means both a staff
member and the department head are needed to cancel a booking.

Solution to Exercise 4.4



129

make
repair

TraineeMaster

Staff

Note that staff should not be abstract, since the description indicates there may be other employees
besides master and trainee. In case it would have been clear from the context that master and
trainee are the only employees that can make the repair we could have used a common abstract
actor instead.

Solution to Exercise 4.5

Teacher

Student

grade

conduct
interview

«include»

Note that using an extend relation here is not appropriate since the teacher always has to grade
the student. The exercise clearly suggests that grading is a separate use case, which is why we
model the situation as above. Note, however, that theoretically this leaves the possibility that the
teacher that grades is different from the one that conducts the interview, this is due to the level of
abstraction of use cases. If it is really important that this is one and the same teacher, you may
argue that there is just one use case conduct interview that involves a student and a teacher.

Solution to Exercise 4.6

Student
change

password

edit profile

«extend»
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Note that using an include relation here is not appropriate since the student can change their
password, but this is optional. Also, if you model strictly according to the UML standard, student
must have an association to change password, since the associations are not inherited in any
direction along the extends relation (nor are they inherited along an include relation)

Solution to Exercise 4.7

1. For use case A, the valid combinations are:

• X
• Y

Note that only one actor at a time can communicate with this use case.

2. For use case B, the only valid combination is Y , since the association from X to A is not
inherited along the include relation from A to B.

Solution to Exercise 4.8

1. If we look at the textual specification, we can identify three potential actors: Client, Com-
pany and Bank.

2. We create the following use case diagram.

Bank

CompanyClient
Transport

goods

Transfer
money

Negotiate
offer

Request
transport

Transport

3. We give a detailed description of negotiate offer.
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Name: Negotiate offer
Short description: The company determines the amount of time re-

quired for the transport and scheduled period of
transport and makes an offer to the client.

Pre-condition: The client has requested transport
Post-condition: The client agreed to the offer
Error situations: There is no transport available

The client does not agree to the offer
Actors: Client, Company
Trigger: A transport request has been filed
Standard process: (1) The company finds the next available vehicle

which can accommodate the package
(2) The company makes an offer based on the dura-
tion of the trip and sends it to the client
(3) The client agrees with the terms of the offer.
(4) The company sends an invoice and the transport
is scheduled.

Alternative pro-
cess:

(1’) No transport that can accommodate the package
is available. The use case is terminated.
(3”) The client does not agree with the terms of the
offer. Either restart the use case at (1) or terminate
the use case.

Solution to Exercise 4.9

1. The actors are the operator, the customer and the bank.

2. The use case diagram is the following:

Deposit

Check
balance

Withdraw
money

Invalid
PIN

Transaction

Session

Register
system

System
shutdown

System
startup

Bank

Operator

Customer

ATM system

«extends»«includes»

3. Detailed use case description:
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Name: Withdraw money
Short description: When the ATM is running, the customer can with-

draw money from the ATM.
Pre-condition: The system is running
Post-condition: The customer received their money
Error situations: Invalid PIN was entered

Account balance is too low
Actors: Customer, Bank
Trigger: A customer requests to withdraw money
Standard process: (1) The customer enters a valid PIN

(2) The customer enters the amount to be withdrawn
(3) The account balance is sufficient according to the
bank
(4) The money is delivered to the customer

Alternative pro-
cess:

(1’) The customer enters an invalid PIN. The Invalid
PIN use case is triggered.
(3”) The account balance is insufficient according to
the bank
(4”) No money is delivered and an error message is
shown

Solution to Exercise 4.10

1. We already discussed the actors when talking about requirements. When we again analyse
the textual specification, we can identify the actors Librarian and Borrower. In addition,
the ID scanner is a potential actor. We assume that the ID scanner is part of the LIS, so
we do not include it in the list of actors.

2. To identify the use cases we go through all textual requirements. For managing titles, copies
and borrowers we create abstract use cases to be able to register common associations. We
consider Mark out of date as one of the possibilities for modifying title information.

3. Now we associate our actors and the use cases. The final use case diagram is the following.
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Generate
borrower

report

Generate title
report

Cancel
reservation

Reserve
copy

Create
loan

Modify borrower
information

Create
borrower

Modify title
information

Create
tit le

Register
copy

Mark in
poor condition

Mark
out of date

{abstract}
Manage

tit le

{abstract}
Manage

copy

{abstract}
Manage

borrower

Borrower

LIS

Librarian
«extend»

4. Finally, we give a detailed description of one of the use cases.
Name: Reserve copy
Short description: When a copy is not available and not reserved, a

borrower can reserve the copy
Pre-condition: The copy is not available
Post-condition: The borrower has reserved the copy
Error situations: There is no copy that is not reserved
Actors: Borrower
Trigger: A borrower requests to reserve a copy
Standard process: (1) The borrower checks if at least one copy is not

reserved
(2) The borrower sets one copy to reserved

Alternative pro-
cess:

(2’) No copy that is not reserved is available. The
reservation is aborted.

Note that this requirement was directly inferred from requirement R14.

Solution to Exercise 4.11

1. When looking at the description and the requirements, we can identify a number of actors.
The operator (or user), the zero- and end-sensors and the valve. One can debate whether
the LEDs should be included in the use cases. Furthermore, the emergency stop button
may or may not be its own actor. Here we abstract from the LEDs, and we assume the



134 APPENDIX A. SOLUTIONS TO EXERCISES

operator is responsible for pushing an the emergency stop button, so the emergency stop
button is part of the system.

We identify four use cases: initialize, move to zero, move to end, and stop. This results in
the following use case diagram.

«actor»
Valve

«actor»
End sensor

«actor»
Zero sensor

Operator

Initialize

Emergency
Stop

Move to
End

Move to
Zero

Hydraulic cylinder

«extends»

«extends»

«includes»

«extends»

2. Detailed description of the use cases:

Initialization:
Name: Initialize
Short description: Initialize the cylinder
Pre-condition: The cylinder is powered on
Post-condition: The cylinder is initialized at the zero position. Out-

put outReady is set
Error situations:
Actors: Operator
Trigger: The operator issues the cInit command
Standard process: (1) The operator issues command cInit

(2) The system reads that inpAt0 is set
(3) The cylinder sets outShow0

Alternative pro-
cess:

(2’) The cylinder reads inpAt0 is not set

(3) The use case continues with executing use case
Move to zero

Move to zero:
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Name: Move to zero
Short description: The cylinder moves to the zero position
Pre-condition: outReady is set
Post-condition: The cylinder is at the zero position. Output out-

Show0 is set
Error situations: Cylinder does not reach start position within 10ms
Actors: Operator, Valve
Trigger: The operator issues the cMove0 command
Standard process: (1) The operator issues command cMove0

(2) The system reads inpAt0 is not set
(3) The cylinder sets outMove0
(4) The cylinder reads inpAt0 until it is set
(5) The cylinder sets outShow0

Alternative pro-
cess:

(2’) The cylinder reads inpAt0 is set. The use case
continues at (5)
(4’) inpAt0 remains not set for more than 10 ms. Use
case continues with Emergency Stop.

Move to end:
Name: Move to end
Short description: The cylinder moves to the end position
Pre-condition: outReady is set
Post-condition: The cylinder is at the end position. Output out-

Show1 is set
Error situations: Cylinder does not reach end position within 10ms
Actors: Operator, Valve
Trigger: The operator issues the cMove1 command
Standard process: (1) The operator issues command cMove1

(2) The system reads inpAt1 is not set
(3) The cylinder sets outMove1
(4) The cylinder reads inpAt1 until it is set
(5) The cylinder sets outShow1

Alternative pro-
cess:

(2’) The cylinder reads inpAt1 is set. The use case
continues at (5)
(4’) inpAt1 remains not set for more than 10 ms. Use
case continues with Emergency Stop.

Emergency stop:
Name: Emergency stop
Short description: The cylinder quickly stops and reinitializes
Pre-condition: outReady is set
Post-condition: The cylinder is not moving and outputs its position.

Position might be unknown
Error situations: -
Actors: Operator, Valve
Trigger: The operator issues the cStop command, or other use

cases detect an emergency
Standard process: (1) The operator issues command cStop

(2) The cylinder unsets outMove0
(3) The cylinder unsets outMove1
(4) The cylinder executes Initialize

Alternative pro-
cess:

None

Solution to Exercise 4.12
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Solution to Exercise 5.1

1. center, radius

2. color

3. there are no public attributes.

4. there are no private operations.

5. calculateArea

6. draw, getCenter, getRadius, getArea, setSize

Solution to Exercise 5.2

WaiterOrder * 1

Note that it is also correct to write 0..∗ instead of ∗. If you write 1..∗ that may be correct
depending on the situation, however, the description does not give you any information that
requires one waiter to handle at least one order, hence 0..∗, or simply ∗, is preferred.

Solution to Exercise 5.3 This is a typical case for using an association class. Leasing contract
is an association class that belongs to the association between flats and tenants. The class diagram
is as follows.

Leasing
Contract

TenantFlat * *

Solution to Exercise 5.4

KitchenRestaurant   1 1..*

Note that when the restaurant is destroyed, the kitchen also is destroyed, hence we use a compo-
sition. The diamond for the composition is always on the side of the whole. The multiplicity 1
can be omitted, since it is assumed the default.

Solution to Exercise 5.5
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Event
+eventpart
 *

 0..1

The event may be part of another event, so there is a part/whole relationship. However, an event
is not always part of another event, so composition is too strong.

Solution to Exercise 5.6

GuestMember

{abstract}
Participant

invite1 *

Note that the question specifies there are exactly two kinds of participants, and we model both
kinds explicitly, hence there are no instances of Participant, so it is marked abstract.

Solution to Exercise 5.7 The singly linked list can, e.g., be modelled using the following class
diagram.

Node

-element: Type

+getElement(): Type
+getNext(): Node
+setNext(n: Node): void

SinglyLinkedList

-size: int

+size(): int
+isEmpty(): Bool
+first(): Type
+last(): Type
+addFirst(e: Type): void
+addLast(e: Type): void
+removeFirst(): Type

-nex t

0..1

- ta i l
0..1

-head
0..1

Note that we here chose to model the references to the head and tail of the list as associations,
similar to what is done in (Seidl et al., 2015, Figure 4.12 (a)). The reference to the next node is
done in a similar way. We choose to record size as an attribute, since that allows constant time
retrieval of the size of the list; if size is not maintained as attribute, its implementation is linear
in the size of the list. We also define appropriate operations for the other methods described in
the informal text.

We have chosen a composition relation for head, tail, and next, reflecting the intuition that
nodes cannot exist without the linked list object, i.e., there is a clear part/whole relationship.

Solution to Exercise 5.8 First we define the classes. In this case we have a Transport that
can be requested, a Vehicle that transports the packages, an Offer, a Client that wants a package
transported, a Package to be transported and a Payment (transaction) that is handled by the
bank.
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We then add the variables to the classes. A vehicle has a size. The transport has a vehicle
that it is associated with, and a status. The client has a package, and a package has a given size,
source and destination. A payment has an amount paid. An offer made for a transport has a
period (pair of dates) in which the transport can be scheduled and an amount to be paid for the
transport.

We then add operations; in particular, the client can authorize the payment. Most of the work
is done in the transport: we can find a vehicle, make an offer, register the response to the offer,
send an invoice, register that payment has been completed, and schedule the transport as specified
in the offer.

Finally, we add the relations between the classes. This all results in the following class diagram.

«enumeration»
TransportStatus

Requested
Offered
Accepted
Payed
Completed

Payment

amount: Money

Client

authorizePayment(): void

Package

size: int
source: String
destination: String

Offer

periodStart: Date
periodEnd: Date
amount: Money

Vehicle

size: int

Transport

vehicle: Vehicle
status: TransportStatus

findVehicle(): Vehicle
makeOffer(): void
offerResponse(a: Boolean): void
sendInvoice(): void
paymentCompleted(): void
schedule(): void

0..1 *
1 0..1

1

0..*

1..* 1

Solution to Exercise 5.9 First we define the classes. These are, at least, Title, Copy, User,
Librarian. One could decide to make classes for Book and Magazine, however, according to the
description these are treated in exactly the same way, so here we decide to make these explicit
classes. Instead, we create the data type TitleType; this is a more extensible solution when the
library wants to add other types such as ebook that should also be handled in the same way.
Depending on the scope of your system, you may also want to include the IDScanner as a class.

We next add the attributes to the classes, based on the information from the description and
the requirements. We also add the operations and associations. Note that we use an association
class for the loans, so that an item can be borrowed by multiple borrowers, and multiple items can
be borrowed by a single borrower. For reservation, the requirements suggest that any copy can
only be reserved by one borrower at a time, and it appears there is no need for keeping a history,
hence we make the reservation an attribute of the copy. The class diagram is the following.
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Loan

«enumeration»
TitleType

book
magazine

Borrower

getAvailableCopy(t: Title): Copy

createLoan(c: Copy): Boolean
reserveCopy(c: Copy): Boolean
cancelReservation(c: Copy): void

Librarian

+createTitle(): void
+modifyTitle(): void
+createBorrower(): void
+modifyBorrower(): void
+registerCopy(t: Title): void
+markOutOfDate(t: Title): void
+markPoorCondition(c: Copy): void
+reportTitles(): void
+reportBorrowers(): void

User

Copy

-available: Boolean
-reservedBy: Borrower

+setAvailability(b: Boolean): void
+reserve(b: Borrower): void

Title

-type: TitleType

0..*

0..*

0..*

0..*

0..*

reservation

0..*

1

Solution to Exercise 5.10 After examining the system description above one can find the
following classes:

Controller Crossing

Signal Track

Now let’s think about some attributes that the classes above can above. Here are some valid
examples:
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Controller Crossing

-closed: Boolean

Signal

-redOn: Boolean
-greenOn: Boolean

Track

+hasTrain: Boolean

Now let’s see what operations are necessary:

Controller
Crossing

-closed: Boolean

+isClosed(): Boolean
+close(): void
+open(): void

Signal

-redOn: Boolean
-greenOn: Boolean

+isRed(): Boolean
+switchToRed(): void
+switchToGreen(): void

Track

+hasTrain: Boolean

But this is not enough, now let’s think about the controller’s operations:
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Controller

+openCrossing(): void
+closeCrossing(): void
+turnSignal1Red(): void
+turnSignal1Green(): void
+turnSignal2Red(): void
+turnSignal2Green(): void

Crossing

-closed: Boolean

+isClosed(): Boolean
+close(): void
+open(): void

Signal

-redOn: Boolean
-greenOn: Boolean

+isRed(): Boolean
+switchToRed(): void
+switchToGreen(): void

Track

+hasTrain: Boolean

And last but not least let’s see what are the relationships between the classes:

Controller

+openCrossing(): void
+closeCrossing(): void
+turnSignal1Red(): void
+turnSignal1Green(): void
+turnSignal2Red(): void
+turnSignal2Green(): void

Crossing

-closed: Boolean

+isClosed(): Boolean
+close(): void
+open(): void

Signal

-redOn: Boolean
-greenOn: Boolean

+isRed(): Boolean
+switchToRed(): void
+switchToGreen(): void

Track

+hasTrain: Boolean

11

2

1

3

1

Note that in this case we decided to make the multiplicities exactly as described in the as-
signment. Of course, you could think about generalizing the class diagram in different ways. For
instance, you could be less strict in the multiplicities, but that would mean you also need to
reconsider the operations of the controller class.

Solution to Exercise 5.11 After examining the system description above one can find the
following classes:
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Now let’s think about some attributes that the classes above can above. Here are some valid
examples:

Now let’s see what operations are necessary:
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But this is not enough, now let’s think about the fun part, the central controller’s operations:



145

And last but not least let’s see what the associations are:
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Solution to Exercise 6.1

1. We give a table containing the different configuration that we move through. Note that
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after the second e4 the completion transition of S1 is executed.

Event Configuration

Start {S3}
e2 {S1,S1.1}
e4 {S1,S1.2}
e4 {S2}

2. We again give a table. Note that the e3 event is consumed and does not have any effect.

Event Configuration

Start {S3}
e1 {S1,S1.2}
e3 {S1,S1.2}
e4 {S2}

Solution to Exercise 6.2

1. In configuration {A,C,E}, when event e1 occurs, the transition from A is executed, and
the machine reaches configuration {G}. In that configuration, when e3 occurs, state A is
entered through the deep history pseudo-state, so the state machine returns to configuration
{A,C,E}.

2. In configuration {A,C,E}, when event e1 occurs, the transition from A is executed, and
the machine reaches configuration {G}. In that configuration, when e5 occurs, state A is
entered through the history pseudo-state, so only the history of the children of state A
is preserved, so the state machine returns to state C, but its descendants are initialized
normally, so the state machine goes to configuration {A,C,D}.

3. In configuration {A,C,E}, when event e1 occurs, the transition from A is executed, and the
machine reaches configuration {G}. In that configuration, when e6 occurs, state A is not
entered through any history pseudo-states, so we go to its initial child. The state machine
hence ends up in configuration {A,B}.

Solution to Exercise 6.3

1. We present the table with the configurations the state machine diagram moves through.

Event Configuration

Start {S1,S2}
e1 {S1,S3}
e2 {S5}
e2 {S1,S3}
e1 {S1,S4}

So, the state machine is in configuration {S1,S4}.
2. We present the table with the configurations the state machine diagram moves through.

Event Configuration

Start {S1,S2}
e1 {S1,S3}
e2 {S5}
e3 {S1,S2}
e1 {S1,S3}

So, the state machine is in configuration {S1,S3}. The difference with the previous exe-
cution is that the transition with event e3 does not go to the history state, so the default
initialization of state S1 is used.

3. We present the table with the configurations the state machine diagram moves through.
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Event Configuration

Start {S1,S2}
e1 {S1,S3}
e1 {S1,S4}
e2 {S5}
e2 {S1,S4}

4. We present the table with the configurations the state machine diagram moves through.
Event Configuration

Start {S1,S2}
e1 {S1,S3}
e1 {S1,S4}
e2 {S5}
e2 {S1,S4}
e1 {S1,S2}
e1 {S1,S3}
e2 {S5}
e2 {S1,S3}

Solution to Exercise 6.4

1. P1 is a simple state, Q is a composite state, U is an orthogonal state (which is, in fact, a
special kind of composite state), and S is a region in orthogonal state U; for all practical
purposes, S can itself be handled as a composite state.

2. We have the following configurations in terms of the root:

• Every configuration contains root.
• Every configuration contains either P1 or P2 or Q.
• Every configuration that contains Q contains either Q1 or U.
• Every configuration that contains U contains both S and T since U is an orthogonal
state.

• Every configuration that contains S contains either S1 or S2
• Every configuration that contains T contains either T1 or T2.

The configurations with respect to the root of the diagram are thus the following. Note
that we assume root is an implicit member of all configurations.

• {P1}
• {P2}
• {Q,Q1}
• {Q,U,S,T,S1,T1}
• {Q,U,S,T,S2,T1}
• {Q,U,S,T,S1,T2}
• {Q,U,S,T,S2,T2}

3. We present the table with the configurations the state machine diagram moves through.
Event Configuration

Start {P1}
a {P2}
a {Q,U,S,T,S1,T1}
d {Q,U,S,T,S2,T1}

Note that after the second a, we immediately go to S1, but since we need to end up in a
valid configuration, T, which is also part of orthogonal state U is also initialized.

4. We present the table with the configurations the state machine diagram moves through.
Note that this extends the previous question.
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Event Configuration

Start {P1}
a {P2}
a {Q,U,S,T,S1,T1}
d {Q,U,S,T,S2,T1}
f {Q,U,S,T,S1,T1}

Note that when handling event f, there are two transitions that we could take, the one from
Q and the one from state S2. Since S2 is a descendant of Q, the standard prescribes that
the transition from S2 is taken.

5. We present the table with the configurations the state machine diagram moves through.
Event Configuration

Start {P1}
a {P2}
b {Q,Q1}
e {Q,U,S,T,S1,T1}
c {Q,U,S,T,S1,T2}

Solution to Exercise 6.5 We present the table with the configurations the state machine
diagram moves through, along with the values of the variables. We also indicate the order in
which activities are handled. The table only lists a configuration in the row that processes the
last activity of an event.

1. For the sequence e2, e1, e4, e3, e5 we obtain the following.
Event Configuration Comment x

Start start 1
entry of A 2

{A,B} entry of B 3
e2 x++ (self-transition) 4

{A,B} entry of B 5
e1 {A,C}
e4 exit of C 6

{A,C} x = x ∗ 2 (self-transition) 12
e3 x++ in C 13
e5 exit of C 14

exit of A 27
{D} entry of D 26

So, the value is 26.

2. For sequence e1, e3, e4, e4, e3, e5 we get:
Event Configuration Comment x

Start start 1
entry of A 2

{A,B} entry of B 3
e1 {A,C}
e3 x++ in C 4
e4 exit of C 5

{A,C} x = x ∗ 2 (self-transition) 10
e4 exit of C 11

{A,C} x = x ∗ 2 (self-transition) 22
e3 x++ in C 23
e5 exit of C 24

exit of A 47
{D} entry of D 46
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So, the value is 46.

3. For the sequence e2, e2, e1, e3, e5 we get:
Event Configuration Comment x

Start start 1
entry of A 2

{A,B} entry of B 3
e2 x++ (self-transition) 4

{A,B} entry of B 5
e2 x++ (self-transition) 6

{A,B} entry of B 7
e1 {A,C}
e3 x++ in C 8
e5 exit of C 9

exit of A 17
{D} entry of D 16

So, the value is 16.

Solution to Exercise 6.6 We present part of the state machine diagram. In particular, we only
show the part of the state machine where we attempt to turn signal 1 to green; the part of the
state machine for signal 2 is similar.

1: Green
2: Red

Crossing Closed

Both red
Crossing open

Both red
Crossing closed

Close crossing

[otherwise]
/impossible

[no train before crossing]
/Success

Open crossing

[No train in direction 1]
/Success

Turn 1 Red
[otherwise]
/impossible

[otherwise]
/impossible

[no train in direction 2]
/Success

Turn 1 Green

The controller is initially in a safe state, with the crossing closed, and both signals red. When
an event occurs, the state machine checks the conditions, and depending on the outcome, modes
to another state.

Solution to Exercise 6.7 First, we need to identify the states in which our system can be.
We can see that the system has 3 modes, namely: standard, maintenance and emergency. These
modes/states in turn have states contained in them. So we need to think about them too. Only
”Emergency Mode” can be seen as a single state, since all it does is keep all lights on both horizontal
and vertical road red. So lets keep it as a single state, but we need to model both ”Maintenance
Mode” and ”Standard Mode” as separate state diagrams, which we can then combine in one bigger
state diagram which is going to represent the complete state diagram of the system. So lets go.

We will start with the state machine diagram representing the ”Maintenance Mode”. Which,
while no button is pressed, the system only blinks all traffic lights yellow.

We start off by having the initial state, all yellow lights on, and a state for all lights off:



151

However, we will also need to model them as on or off for some time, so let’s add two interme-
diate states which are going to be used to switch the lights to on or off.

And to finalize it, let’s add some transitions.

Now lets do the ”Standard Mode”. As a start we need to 4 states: Vertical Green (here
horizontal are red), Vertical Yellow (here horizontal are red), Horizontal Green (here vertical are
red), Horizontal Yellow (here vertical are red).

Here we do not really need any additional states, so lets just add the transitions.
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And now we need the whole system. Lets build the state diagram using the diagrams we have
built above.

Firstly add the states:

Well this is enough actually, so lets finish it up by adding the transitions.
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Solution to Exercise 7.1 Since the sequence diagram contains a par fragment, there are no
chronological connection between the messages from the different operands. There only is a
chronological connection between a and b, and between c and d. Therefore, we get the following
traces:

• a→ b→ c→ d
• a→ c→ b→ d
• a→ c→ d→ b
• c→ a→ b→ d
• c→ a→ d→ b
• c→ d→ a→ b

Solution to Exercise 7.2 Since the sequence diagram contains a par fragment at the highest
level, messages in each of the operands are executed in parallel. Note that the messages b and
c within the critical fragment cannot be interleaved with the other messages, so b and c appear
atomically. However, within the critical fragment, the standard order seq applies, and since there
are no dependencies between b and c if we look at the lifelines, b and c may appear in any order.
Therefore, we get the following traces:

• a→ b→ c→ d
• a→ d→ b→ c
• b→ c→ a→ d
• b→ c→ d→ a
• d→ a→ b→ c
• d→ b→ c→ a
• a→ c→ b→ d
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• a→ d→ c→ b
• c→ b→ a→ d
• c→ b→ d→ a
• d→ a→ c→ b
• d→ c→ b→ a

Note that in each of these traces, b and c appear next to one another (but in any order).

Solution to Exercise 7.3 The class has at least all operations which are invoked by itself and
other classes meaning that a message is sent from a class to this particular class. A message
may be labeled with the syntax name (arguments) A return message may be labeled with
attribute=name:value or short name:value.

• Class A. Only one operation of A is invoked, y with parameter 123, and int, hence y(int):
void

• Class B. Here two operations of B are invoked:

1. x without parameters. The return message has not been modeled explicitly, thus we
assume that there is no return value (void).

2. x without parameters with a return message (return value “abc” - apparently a String).

Based on the sequence diagram, the correct answers therefore are x():void and x():
String. Note that may languages (especially strongly typed ones) forbid the presence of
both methods in a single class. However, this is still the information we can infer from the
sequence diagram.

• Class C. Only one operation of C is invoked, Z without parameters, and the return message
has not been modelled explicitly. Hence the answer is z(): void

Solution to Exercise 7.4 There are multiple possible solutions. The most straightforward is to
put a and b into a critical fragment.

critical

:E:D:C:B:A

h

g

f

    e

    d

c

    b

a

Solution to Exercise 7.5 The following sequence diagram describes how to turn signal 1 Green.
The description states that, if the supervisor decides to change a signal to green, the controller

should make sure that:

1. there is no train coming in the opposite direction towards the signal
2. the crossing is closed
3. the signal in the opposite direction is red.
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If all these are true then the controller can switch the signal to green, if not it should not. This
gives the following sequence diagram:

Observe that all objects in the sequence diagrams are instances of classes from the class di-
agram. Also, note that all messages are operations in the class diagram, and the objects are
connected appropriately in the class diagram.

Solution to Exercise 7.6 We give the sequence diagrams for two of the use cases.

First let’s look at how to change the colours of the lights. All three cases (change lights to
green, yellow, or red) are basically the same. They only differ in what parameters the Central
Controller sends to the Traffic Light. The blinking yellow light for Maintenance mode is done via
a loop frame in the sequence diagram.

This is how the Central Controller sets the lights of the Traffic Light to green.
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Now that we know how to change the light of the Traffic Light to some colours lets see how we
can represent the different modes in a sequence diagram. All three modes are analogous, so here
only the case for Emergency Mode is presented.
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Solution to Exercise 8.1

• A→ C
• A→ B → C
• B → A→ C

Solution to Exercise 8.2

• A→ C
• A→ B
• B

Solution to Exercise 8.3

• A→ C
• A→ B → D

Solution to Exercise 8.4

• A→ C
• A→ B → C

Solution to Exercise 8.5

• A→ B
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• A→ C

Solution to Exercise 8.6

• A→ B → D
• A→ C → D
• A→ B → C → D
• A→ C → B → D

Solution to Exercise 8.7

• A→ D
• A→ B → D
• A→ B → C

Solution to Exercise 8.8 Note this diagram has exactly the same meaning as the one in
Exercise 8.7. The book writes about this: “If a token is present at an incoming edge of an
activity final node, the entire activity is terminated—that is, all active actions of this activity are
terminated.”

• A→ D
• A→ B → D
• A→ B → C

Solution to Exercise 8.9 Compared to exercises Exercise 8.7 and 8.8, we use a join node to
combine both paths. To terminate the activity, both C and D need to be terminated.

• A→ B → C → D
• A→ B → D → C’
• A→ D → B → C

Solution to Exercise 8.10 According to the description, the supervisor decides to change a
signal to green, the controller should make sure that:

1. there is no train coming in the opposite direction towards the signal
2. the signal in the opposite direction is red
3. the crossing is closed

Similar checks have to be performed for changing the signal to other colors. Each time, we carry
out the checks in parallel, since there is no order dependency.

We then get the following activity diagram. (Rotated for readability)1

1This solution was provided by Jaro Reinders
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Solution to Exercise 8.11 To create an Activity Diagram we should first think about what
operations (of course depending on the activity we want to represent) the system at hand can
perform. Also one must be familiar with the semantics of an Activity Diagram, i.e. what do the
different shapes and symbols mean.

Assuming that we are all set up and ready to go, let’s decide on what activities we would like
to represent using UML Activity Diagrams. Let’s do a simpler example first, say when the system
goes in ”Emergency Mode”.

As always we first need to have an initial state. However, this by itself is not enough, we also
need some kind of stimulus which is going to set everything in motion for the activity diagram.
But we already have this stimulus, it is when the supervisors initiates the ”Emergency Mode” by
lets say a button. So this is what we have so far.

So what happens next? The system must start blinking all four yellow lights on each of
the traffic lights. In the picture below we are looking at a single traffic light, but this happens
simultaneously in all four traffic lights. (One can try and extend the diagram using a ”Fork” and
”Join” symbol.)

But this is not enough currently it is just going to continue on blinking forever. So we lets
add a stopping rule, which lets assume is done by the supervisors with a button ”End Emergency
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Mode”. We can use an interruptible activity region. One can also make it using a ”Decision
symbol” with guards. Both representations are correct, depends on how you want to model it.

And to finalize we just need to add the ”End symbol”.
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Now that we have done something easier, lets do something a bit more complicated. Which
lets model how the system should work in ”Standard mode”. Here we are again representing the
two vertical and two horizontal traffic lights as a single vertical and a single horizontal.

We start the same way as before. When the system is turned on, we will assume that the
supervisor must turn on ”Standard mode” and when he wants to end it, he can just press a
button say ”End Standard Mode”

As it is described above, we know that the vertical traffic light has priority over the other, so
when the system starts up, the vertical traffic lights are green and other ones are red. This can
be done as follows:
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Now we want to make sure that if any of the sensors on the horizontal road detects a car, the
system will keep the lights green for the vertical road until no car has passed in the last 2 seconds
on the vertical road.
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Now that this is done, if no car has passed in the last 2 seconds on the vertical road we can
set the vertical lights to yellow, then red, then set the the horizontal lights to green.
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So what now, check if any of the horizontal sensors has detected a car in the last 3 second. If
it has, stay in the same state, if it hasn’t then set horizontal to yellow, then red, then vertical to
green.
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Okay! But this is not enough. Currently the system is missing some key point from the
assumptions we have made above. Firstly while the horizontal lights are green, if there is an
approaching or waiting car on the vertical road, the system does not do anything, lets change this.
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We’re almost there! What’s left. Well what about the ”33 seconds assumption”. Lets add it
in!



168 APPENDIX A. SOLUTIONS TO EXERCISES

And all done!

However, this task can have multiple correct solutions depending on requirements, assumptions,
different interpretations etc. This was just one of many.
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Solution to Exercise 9.1

1. This could, for instance, be modelled using the following Kripke structure.

s0

s1{opened}

s2 {startPushed}s3{cooking}

The formal definition, and the labelling, are as follows.

• S = {s0, s1, s2, s3}
• →= {(s0, s1), (s1, s0), (s0, s2), (s2, s3), (s3, s0)}
• AP = {opened , cooking , startPushed}
• L(s0) = ∅
• L(s1) = {opened}
• L(s2) = {startPushed}
• L(s3) = {cooking}

Solution to Exercise 9.2 We describe the Kripke structure TTT = (S, s0,→, AP, L). For every
i, j with 1 ≤ i, j ≤ 3 we fix two atomic propositions marked×(i, j) and marked#(i, j) to encode
which cells are marked. To encode whose turn it is we fix two atomic propositions turn× and
turn#. Finally we fix the propositions win×, win# and draw to denote the outcome of the game:

AP = {markedy(i, j) | y ∈ {×,#} ∧ 1 ≤ i, j ≤ 3} ∪ {turn×, turn#,win×,win#, draw}

Let s0 be the initial state. We construct the rest of the states from s0 depending on the
labelling of each state. We decide that player × starts on an empty grid: L(s0) = {turn×}.

Let s be an arbitrary state. We add state labels based on the current labelling L(s) (the
marking), and add transitions.

• If s has a winner, then we add one of the corresponding propositions win× or win# to L(s).
Formally we say that y ∈ {×,#} wins s if

– markedy(i, 1),markedy(i, 2),markedy(i, 3) ∈ L(s) for some i; or
– markedy(1, j),markedy(2, j),markedy(3, j) ∈ L(s) for some j; or
– markedy(1, 1),markedy(2, 2),markedy(3, 3) ∈ L(s); or
– markedy(3, 1),markedy(2, 2),markedy(1, 3) ∈ L(s).

For all states s and all y ∈ {×,#}, whenever y wins s we fix that winy ∈ L(s) and s→ s.
• If s is a full grid and has no winner, then we add draw to L(s). Formally we say that s is
a draw if s has no winner and for all 1 ≤ i, j ≤ 3 we have markedy(i, j) ∈ L(s) for some
y ∈ {×,#}. For all states s such that s is a draw we fix draw ∈ L(s) and s→ s.

• Otherwise s denotes a non-draw grid with no winner and we add transitions according to
the game rules. For all such states we do the following:

– If turn× ∈ L(s) then for every cell i, j such that neither marked×(i, j) nor marked#(i, j)
is in L(s) we create a fresh state s′ with (s, s′) ∈ →. For such i, j we label s′ as follows:

L(s′) = (L(s) ∪ {marked×(i, j), turn#}) \ {turn×} .

– If turn# ∈ L(s) then the construction proceeds analogously.
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Note 1: One demand of a Kripke structure is that the transition relation is total. The self-loops
s→ s is winning states and draw states are only present to ensure this.

Note 2: This construction is naive in terms of the state space since there are many states that
are labelled exactly the same. Moreover many board configurations are equivalent up to rotation
and mirroring.

Solution to Exercise 10.1

1. We can model the tokens that are put on a grid as follows:

mtype:player = {cX, cO, cNone};

2. To represent the grid, we use a one-dimensional array, of which the indices correspond to
the positions shown in the exercise. Initially the grid is empty. So, we declare the following
global variable and immediately initialise it.

mtype grid[9] = {
cNone, cNone, cNone,
cNone, cNone, cNone,
cNone, cNone, cNone

};

3. Player p wins with configuration grid if a row, column or diagonal is filled with its token.
Since we identify tokens and player, we can encode this as follows.

#define WINS(grid, p) \
( (grid[0] == p && grid[1] == p && grid[2] == p) \
|| (grid[3] == p && grid[4] == p && grid[5] == p) \
|| (grid[6] == p && grid[7] == p && grid[8] == p) \
|| (grid[0] == p && grid[3] == p && grid[6] == p) \
|| (grid[1] == p && grid[4] == p && grid[7] == p) \
|| (grid[2] == p && grid[5] == p && grid[8] == p) \
|| (grid[0] == p && grid[4] == p && grid[8] == p) \
|| (grid[2] == p && grid[4] == p && grid[6] == p) )

4. We first encode that the entire grid is covered, and then check that neither of the players
wins. The resulting macro is then as follows.

#define DRAWS(grid) \
( (grid[0] != cNone && grid[1] != cNone && grid[2] != cNone \
&& grid[3] != cNone && grid[4] != cNone && grid[5] != cNone \
&& grid[6] != cNone && grid[7] != cNone && grid[8] != cNone) \
&& !WINS(grid, cX)
&& !WINS(grid, cO) )

Solution to Exercise 10.2 We essentially use the same construction as for the matrix, and we
add the initialization row-by-row.

typedef rows {
mtype:player row[M];

};
rows grid[N];
rows[0].row = {cNone, cNone, cNone};
rows[1].row = {cNone, cNone, cNone};
rows[2].row = {cNone, cNone, cNone};

Solution to Exercise 10.3 The following process models the repeated placement of cX on an
empty grid position. Note that we refer to the global variable grid.
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active proctype PlayerX()
{

do
::

if
:: (grid[0] == cNone) -> grid[0] = cX;
:: (grid[1] == cNone) -> grid[1] = cX;
:: (grid[2] == cNone) -> grid[2] = cX;
:: (grid[3] == cNone) -> grid[3] = cX;
:: (grid[4] == cNone) -> grid[4] = cX;
:: (grid[5] == cNone) -> grid[5] = cX;
:: (grid[6] == cNone) -> grid[6] = cX;
:: (grid[7] == cNone) -> grid[7] = cX;
:: (grid[8] == cNone) -> grid[8] = cX;
fi

od
}

Solution to Exercise 10.4 We perform the following sequence of commands:

spin -a peterson.pml
gcc -DSAFETY -DNOREDUCE -o pan pan.c
./pan

It reports the following output:

(Spin Version 6.5.2 -- 6 December 2019)

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 28 byte, depth reached 33, errors: 0
58 states, stored
59 states, matched
117 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.003 equivalent memory usage for states (stored*(State-vector + overhead))
0.291 actual memory usage for states
128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)
128.653 total actual memory usage

unreached in proctype P
peterson.pml:22, state 16, "-end-"
(1 of 16 states)

pan: elapsed time 0 seconds

So, no errors are reported (and no trail files are generated), and a full state space search has been
performed. Hence, no deadlocks were found.

Note that it does report that, in proctype P the end state is not reached. The end state here
is the valid end state at the closing brace in the definition of P. The reason for this is that process
P does not terminate (and is not intended to terminate), so this is a harmless remark by the tool
that does not indicate an error.

Solution to Exercise 10.5 Similar to the answer to Exercise 10.4.
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Solution to Exercise ??

1. The model is easily obtained by adapting the model of Peterson’s algorithm:

/* Peterson’s mutual exclusion algorithm for 2 processes. */

/* shared variables */
bool flag[2];

active [2] proctype P() /* two processes; */
{

/* Since we only have two processes, and we do not have the separate
init process the _pid values of these processes are 0 and 1. */

pid i = _pid;
do :: true ->

flag[i] = true;
!flag[1-i];
skip; /* Here the critical section is executed */
flag[i] = false;

od;
}

2. When executing the following commands, the output shows there is a deadlock. We show
the commands and the output together.

spin -a mutex-deadlock.pml
gcc -DSAFETY -DNOREDUCE -o pan pan.c
./pan -i
pan:1: invalid end state (at depth 13)
pan: wrote mutex-deadlock.pml.trail

(Spin Version 6.5.2 -- 6 December 2019)
Warning: Search not completed

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 20 byte, depth reached 14, errors: 1
15 states, stored
2 states, matched
17 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.001 equivalent memory usage for states (stored*(State-vector +

overhead))
0.292 actual memory usage for states

128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)

128.653 total actual memory usage

pan: elapsed time 0 seconds

This clearly indicates there is a deadlock.

3. The counterexample can be printed, resulting in:

spin -t -p -g mutex-deadlock.pml
1: proc 1 (P:1) mutex-deadlock.pml:11 (state 1) [(1)]
2: proc 1 (P:1) mutex-deadlock.pml:12 (state 2) [flag[i] = 1]

flag[0] = 0
flag[1] = 1
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3: proc 1 (P:1) mutex-deadlock.pml:13 (state 3) [(!(flag[(1-i)]))]
4: proc 1 (P:1) mutex-deadlock.pml:14 (state 4) [(1)]
5: proc 0 (P:1) mutex-deadlock.pml:11 (state 1) [(1)]
6: proc 1 (P:1) mutex-deadlock.pml:15 (state 5) [flag[i] = 0]

flag[0] = 0
flag[1] = 0

7: proc 1 (P:1) mutex-deadlock.pml:11 (state 1) [(1)]
8: proc 1 (P:1) mutex-deadlock.pml:12 (state 2) [flag[i] = 1]

flag[0] = 0
flag[1] = 1

9: proc 1 (P:1) mutex-deadlock.pml:13 (state 3) [(!(flag[(1-i)]))]
10: proc 0 (P:1) mutex-deadlock.pml:12 (state 2) [flag[i] = 1]

flag[0] = 1
flag[1] = 1

11: proc 1 (P:1) mutex-deadlock.pml:14 (state 4) [(1)]
12: proc 1 (P:1) mutex-deadlock.pml:15 (state 5) [flag[i] = 0]

flag[0] = 1
flag[1] = 0

13: proc 1 (P:1) mutex-deadlock.pml:11 (state 1) [(1)]
14: proc 1 (P:1) mutex-deadlock.pml:12 (state 2) [flag[i] = 1]

flag[0] = 1
flag[1] = 1

spin: trail ends after 14 steps
#processes: 2

flag[0] = 1
flag[1] = 1

14: proc 1 (P:1) mutex-deadlock.pml:13 (state 3)
14: proc 0 (P:1) mutex-deadlock.pml:13 (state 3)
2 processes created

Careful interpretation of the countexample shows that the deadlock appears when both
processes have set their flag, and are waiting for the other process to reset its flag to false.
Note that if we would have modelled the busy waiting loop explicitly, we would not have
found a deadlock, instead, both processes would continue looping in their busy waiting
loops forever.

Solution to Exercise 10.7

1. The model is as follows.

/* Peterson’s mutual exclusion algorithm for 2 processes. */

/* shared variables */
bool flag[2];
byte ncrit;

active [2] proctype P() /* two processes; */
{

/* Since we only have two processes, and we do not have the separate
init process the _pid values of these processes are 0 and 1. */

pid i = _pid;
do :: true ->

do
:: (flag[1-i]) -> skip; /* continue looping */
:: else -> break; /* stop the loop

*/
od;
flag[i] = true;
ncrit++;
assert(ncrit == 1) /* Here the critical section is executed */
ncrit--;
flag[i] = false;

od;
}

2. Verification using Spin can be performed as follows.
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spin -a mutex-violation.pml
gcc -DSAFETY -DNOREDUCE -o pan pan.c
./pan
pan:1: assertion violated (ncrit==1) (at depth 16)
pan: wrote mutex-violation.pml.trail

(Spin Version 6.5.2 -- 6 December 2019)
Warning: Search not completed

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 28 byte, depth reached 27, errors: 1
49 states, stored
37 states, matched
86 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.002 equivalent memory usage for states (stored*(State-vector +

overhead))
0.291 actual memory usage for states

128.000 memory used for hash table (-w24)
0.458 memory used for DFS stack (-m10000)

128.653 total actual memory usage

pan: elapsed time 0 seconds

So, the output clearly shows that the assertion is violated.

3. We can print the counterexample and interpret the output.

spin -t -p -g mutex-violation.pml
1: proc 1 (P:1) mutex-violation.pml:12 (state 1) [(1)]
2: proc 1 (P:1) mutex-violation.pml:15 (state 4) [else]
3: proc 1 (P:1) mutex-violation.pml:17 (state 9) [flag[i] = 1]

flag[0] = 0
flag[1] = 1

4: proc 1 (P:1) mutex-violation.pml:18 (state 10) [ncrit = (ncrit+1)]
ncrit = 1

5: proc 1 (P:1) mutex-violation.pml:19 (state 11) [assert((ncrit==1))]
6: proc 1 (P:1) mutex-violation.pml:20 (state 12) [ncrit = (ncrit-1)]

ncrit = 0
7: proc 0 (P:1) mutex-violation.pml:12 (state 1) [(1)]
8: proc 1 (P:1) mutex-violation.pml:21 (state 13) [flag[i] = 0]

flag[0] = 0
flag[1] = 0

9: proc 1 (P:1) mutex-violation.pml:12 (state 1) [(1)]
10: proc 1 (P:1) mutex-violation.pml:15 (state 4) [else]
11: proc 0 (P:1) mutex-violation.pml:15 (state 4) [else]
12: proc 1 (P:1) mutex-violation.pml:17 (state 9) [flag[i] = 1]

flag[0] = 0
flag[1] = 1

13: proc 1 (P:1) mutex-violation.pml:18 (state 10) [ncrit = (ncrit+1)]
ncrit = 1

14: proc 1 (P:1) mutex-violation.pml:19 (state 11) [assert((ncrit==1))]
15: proc 0 (P:1) mutex-violation.pml:17 (state 9) [flag[i] = 1]

flag[0] = 1
flag[1] = 1

16: proc 0 (P:1) mutex-violation.pml:18 (state 10) [ncrit = (ncrit+1)]
ncrit = 2

spin: mutex-violation.pml:19, Error: assertion violated
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spin: text of failed assertion: assert((ncrit==1))
17: proc 0 (P:1) mutex-violation.pml:19 (state 11) [assert((ncrit==1))]
spin: trail ends after 17 steps
#processes: 2

flag[0] = 1
flag[1] = 1
ncrit = 2

17: proc 1 (P:1) mutex-violation.pml:20 (state 12)
17: proc 0 (P:1) mutex-violation.pml:20 (state 12)
2 processes created

If we carefully follow the counterexample, in particular tracing back from the assertion
violation, we can observe that first, both processes terminate the busy waiting loop, and
subsequently set their flag and enter the critical section, violating the assertion.

Solution to Exercise 10.8

1. The message type can be defined as follows.

mtype:message = {aBeginTurn, aEndTurn};

2. The synchronous channels for both players can be defined as follows.

chan comPlayerX = [0] of { mtype:message };
chan comPlayerO = [0] of { mtype:message };

3. We extend the process for player × as follows.

active proctype PlayerX()
{

do
::

comPlayerX?aBeginTurn;
if
:: (grid[0] == cNone) -> grid[0] = cX;
:: (grid[1] == cNone) -> grid[1] = cX;
:: (grid[2] == cNone) -> grid[2] = cX;
:: (grid[3] == cNone) -> grid[3] = cX;
:: (grid[4] == cNone) -> grid[4] = cX;
:: (grid[5] == cNone) -> grid[5] = cX;
:: (grid[6] == cNone) -> grid[6] = cX;
:: (grid[7] == cNone) -> grid[7] = cX;
:: (grid[8] == cNone) -> grid[8] = cX;
fi
comPlayerX!aEndTurn;

od
}

So, we start the turn by receiving aBeginTurn along channel comPlayerX, and end the turn
by sending aEndTurn along the same channel.

4. The process for player # is completely analogous to that of player ×.

active proctype PlayerO()
{

do
::

comPlayerO?aBeginTurn;
if
:: (grid[0] == cNone) -> grid[0] = cO;
:: (grid[1] == cNone) -> grid[1] = cO;
:: (grid[2] == cNone) -> grid[2] = cO;
:: (grid[3] == cNone) -> grid[3] = cO;
:: (grid[4] == cNone) -> grid[4] = cO;
:: (grid[5] == cNone) -> grid[5] = cO;
:: (grid[6] == cNone) -> grid[6] = cO;
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:: (grid[7] == cNone) -> grid[7] = cO;
:: (grid[8] == cNone) -> grid[8] = cO;
fi
comPlayerO!aEndTurn;

od;
}

5. We model a process Game() with local variables turn and won. Then, we iterate. In each
iteration, we first check if either of the players wins, if so, we indicate that no player has
the turn any more by setting turn = cNone, we set won to the winner, and we break from
the loop. If it is a draw, we also indicate no player has the turn, and set won = cNone to
indicate there is no winner.
If the game has not ended yet, we look at the turn variable, and send the turn to the
appropriate player, wait for the player to end the turn, and then set the turn to the other
player.
The entire process then becomes the following.

active proctype Game()
{

mtype turn = cX;
mtype won = cNone;

do
:: (WINS(grid, cX)) ->

turn = cNone;
won = cX;
printf("Player X wins")
break;

:: (WINS(grid, cO)) ->
turn = cNone;
won = cO;
printf("Player Y wins")
break;

:: (DRAWS(grid)) ->
turn = cNone;
won = cNone;
printf("It’s a draw")
break;

:: else ->
if
:: (turn == cX) ->

comPlayerX!aBeginTurn;
comPlayerX?aEndTurn;
turn = cO;

:: (turn == cO) ->
comPlayerO!aBeginTurn;
comPlayerO?aEndTurn;
turn = cX;

fi
od

}

Solution to Exercise 10.9

1. Spin reports an pan:1: invalid end state (at depth 66). What this error message means
is that we are effectively in a deadlock state, where not all processes are at the end of the
body of their definition (at the closing }). We can indicate to spin that this is ok, by
considering the beginning of the loop in each of the player processes a correct end state as
well. For this, prepend the do lines in both player processes with end:
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If we make this change and reverify, the tool reports no errors.

2. We can add the following assertion to the Game() process, after the od.

assert(WINS(grid,cX) || WINS(grid,cO));

If we then verify the property using Spin, according to the same commands provided
before, the tool reports pan:1: assertion violated, with the assertion that is violated. It
also shows exactly the grid that violates the assertion upon termination. If we study the
grid, we see that indeed, the grid is full but there is no winner.

3. Since there can be no winner, we need to account for a draw as well at the end of execution,
so we need to change the assertion to the weaker

assert(WINS(grid,cX) || WINS(grid,cO) || DRAWS(grid));

If we make this change and reverify, the tool reports no errors. Of course, with our knowl-
edge of tic-tac-toe this is exactly what we expected.

Solution to Exercise 10.10 We explain the steps that need to be taken in Spin. We assume
the model of the alternating bit protocol is in abp-unreliable.pml.

1. If we assume the analyzer was generated following the example in the previous section, the
output reports no errors, so there are no deadlock states, and no assertion failures.
Furthermore, the tool will report that there are unreachable states -end- in each of the
processes. This is to be expected: we model a protocol that keeps running indefinitely,
so it is undesirable for the processes to terminate, and we can, in fact, be happy that no
end states are reached. In other words, the unreachable end states that are reported are
nothing to worry about.

2. The tool reports an assertion violation pan:1: assertion violated (m == ((last_m+1)%2)

)(at depth 22). So, we accept a message that we did not expect to accept.
We can give a sequence diagram-like representation as follows.

spin -t -c abp-unreliable.pml
proc 0 = :init:
proc 1 = Sender
proc 2 = Receiver
proc 3 = unreliable_channel_bit
proc 4 = unreliable_channel_data
q\p 0 1 2 3 4

2 . out!MSG,0,0
2 . . . . in?MSG,0,0
3 . . . . out!MSG,0,0
3 . . in?MSG,0,0
4 . . out!ACK,0
4 . . . in?ACK,0
1 . . . out!ACK,0
1 . in?ACK,0
2 . out!MSG,1,1
2 . . . . in?MSG,1,1
3 . . . . out!MSG,1,1
3 . . in?MSG,1,1
4 . . out!ACK,1

ACCEPT 1
spin: abp-unreliable.pml:46, Error: assertion violated
spin: text of failed assertion: assert((m==((last_m+1)%2)))
spin: trail ends after 21 steps
-------------
final state:
-------------
#processes: 5

queue 2 (fromS):
queue 3 (toR):
queue 4 (fromR): [ACK,1]



178 APPENDIX A. SOLUTIONS TO EXERCISES

queue 1 (toS):
21: proc 4 (unreliable_channel_data:1) abp-unreliable.pml:71 (state

6)
21: proc 3 (unreliable_channel_bit:1) abp-unreliable.pml:58 (state 6)
21: proc 2 (Receiver:1) abp-unreliable.pml:38 (state 14)
21: proc 1 (Sender:1) abp-unreliable.pml:17 (state 13)
21: proc 0 (:init::1) abp-unreliable.pml:85 (state 5) <valid end

state>
5 processes created

This gives us the processes and the messages they send and receive. In this case, for
instance, the first message that is sent is out!MSG,0,0 by the Sender process. Using this
information, we can try to understand the execution that leads to a failure, and debug the
model.
If we analyze this counterexample, the first accepted message is 1, but the first sent message
is 0, so what happened to the first message?
The problem now is that, in the first round, last_recvbit == recvbit in the receiver, so the
receiver will believe this is an old message, and does not update the successfully received
message, and does not accept the message, but it sends the acknowledgement that the
sender expects. So the next message the sender sends is message 1, which is then accepted
by the receiver. However, since the first message that should be accepted is 0, the assertion
fails.

Solution to Exercise 11.1

1. F 1coin

2. GF servingTea

3. GF(servingTea ∨ servingCoffee)

4. G(2coins → (2coins U servingCoffee))

5. G(1coin → (1coin ∨ 2coins)U(servingCoffee ∨ servingTea))

Solution to Exercise 11.2

1. G¬(o ∧ X o)

2. G(i→ (o ∨ X o ∨ XX o))

3. G(i→ (o↔ X o))

4. GF o

Solution to Exercise 11.3 The following formula is a solution:

G(green → X(green U(yellow ∧ X(yellow U red))))

Solution to Exercise 11.4

1. X a: {s0, s1, s2, s3, s4}
2. X(X a): {s0, s1, s2, s3, s4}
3. G b: ∅
4. GF b: {s0, s1, s2, s3, s4}
5. FG a: {s0, s1, s2, s3, s4}
6. G(aU b): {s1, s2, s3, s4}
7. G(bU a): {s1, s2, s3, s4}
8. F(bU a): {s0, s1, s2, s3, s4}
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Solution to Exercise 11.5

1. φ1 = FG c: false. One counter-example is the path s1(s4s3)
ω. (Note that there more paths)

2. φ2 = GF c: true. All infinite paths from s1 have a suffix in which s4 alternates with one of
the states s2, s3, and s5 where c holds. You cannot avoid c.

3. φ3 = X¬c → XX c: true. The property considers only the first steps of a path. Starting
from s1, the left hand side of the implication requires that the first transition is to s4.
Then, in one step we must reach a state where c holds. In all states reachable in one step
from s4 c holds, so the property is satisfied.

4. φ4 = G a: false. We only need a finite prefix as counter-example. For instance, s1s4, etc.

5. φ5 = aUG(b ∨ c): true. Starting from s1: a holds in s1. After that, b ∨ c holds in all the
other states. Therefore, property φ5 holds.

6. φ6 = (XX b)U(b∨ c): false. Consider the path (prefix) s1s4s2. At position 0, b∨ c does not
hold, so XX b must hold, but b does not hold in s2 and s1s4s2 is a counter-example.

Solution to Exercise 11.6

1. Mutual exclusion: G¬(Peter .use ∧ Betsy .use)

2. Finite time of usage: G(Peter .use → F¬Peter .use). Same for Betsy.

3. Absence of individual starvation: G(Peter .request → FPeter .use)

4. Absence of blocking: GFPeter .request

Solution to Exercise 11.7

1. At next: X((¬φU(φ ∧ ψ)) ∨ G¬φ)
2. While: (φU¬ψ) ∨ Gφ

3. Before: F(φ ∧ (XFψ)) ∨ G¬ψ

Solution to Exercise 11.8

1. F(win× ∨ win# ∨ draw)

2. G(¬(win× ∧ ¬win#))
3. G((turn× → ¬X turn×) ∧ (turn# → ¬X turn#))

4. For all 1 ≤ i, j ≤ 3 we need the formula G(¬(marked×(i, j) ∧marked#(i, j))).

5. For all 1 ≤ i, j ≤ 3 we need the formula

G(marked×(i, j) → G(marked×(i, j))) ∧ G(marked#(i, j) → G(marked#(i, j)))

Solution to Exercise 11.9 The equivalence does not hold. A counter example is path π = s0s1
such that L(s0) = {a} and L(s1) = {c}. That is, proposition a holds and then proposition c holds.
Formula ψ = (aU b)U c does not hold on that path. The first part of the formula requires that if
a holds then b must hold in the future. Along path π, b never holds. Therefore, ψ does not hold.
By definition of the operator until, φ = aU(bU c) holds on path π, since bU c holds immediately
in state s1.

Solution to Exercise 11.10
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1. Gφ→ Fψ ≡ φU(ψ ∨ ¬φ). We first derive:

Gφ→ Fψ ≡ ¬Gφ ∨ Fψ {Def. of →}
≡ F¬φ ∨ Fψ {Du-G}
≡ F(¬φ ∨ ψ) {Di-F∨}
≡ trueU(¬φ ∨ ψ) {F-U}

It remains to be proven that trueU(¬φ∨ψ) ≡ φU(ψ ∨¬φ). In other words, for all infinite
paths π, π |= trueU(¬φ∨ ψ) if and only if π |= φU(ψ ∨¬φ). Note that, since ϕ =⇒ true,
it follows immediately from M-U1 that φU(ψ ∨ ¬φ) =⇒ trueU(ψ ∨ ¬φ).
For the other implication, fix an arbitrary infinite path π such that π |= trueU(¬φ ∨ ψ).
So, there must be some j ≥ 0 such that π[j . . .] |= ¬φ ∨ ψ. Consider the smallest such
j. Then for all 0 ≤ i < j, π[i . . .] ̸|= ¬φ ∨ ψ, so in particular, π[i . . .] |= φ. Therefore,
π |= φU(ψ ∨ ¬φ).

2. FGφ→ GFψ ≡ G(φU(ψ ∨ ¬φ)). We first prove a lemma. Although in general G does not
distribute over ∨, it sometimes does.

Lemma. For any two formulas p and q, G(F p ∨ F q) ≡ GF p ∨ GF q.

Proof. Consider the contraposition ¬G(F p ∨ F q) ≡ ¬GF p ∧ ¬GF q. We first derive the
following.

¬G(F p ∨ F q) ≡ ¬GF(p ∨ q) Di-F

≡ F¬F(p ∨ q) Du-G

≡ FG(¬p ∧ ¬q) Du-F

So, if we apply this to the left-hand side of our proof obligation, it remains to show that

FG(¬p ∧ ¬q) ≡ FG¬p ∧ FG¬q.
We now prove both directions of the equivalence separately.

=⇒ Consider an arbitrary infinite path π such that π |= FG(¬p ∧ ¬q). So, there is some
i ≥ 0 such that for all j ≥ i, π[j . . .] |= ¬p ∧ ¬q. Informally, from position i onwards,
¬q∧ ≠ q is true forever. It then follows immediately that for all j ≥ i, π[j . . .] |= ¬p,
and π[j . . .] |= ¬q. Therefore, i witnesses π |= FG¬p and π |= FG ̸= q.

⇐= Consider an arbitrary infinite path π such that π |= FG¬p ∧ FG¬q. Therefore, π |=
FG¬p and π |= FG¬q. So, there is some i ≥ 0 such that for all j ≥ i, π[j . . .] |= ¬p,
and also there is some k ≥ 0 such that for all j ≥ k, π[j . . .] |= ¬q. Then for all
j ≥ max(i, k) it holds that π[j . . .] |= ¬qland ̸= q, and therefore, max(i, k) witnesses
that π |= FG(¬p ∧ ¬q).

We now prove the equivalence of the exercise by a sequence of equivalences.

FGφ→ GFψ ≡ ¬FGϕ ∨ GFψ {Definition of →}
≡ GF¬φ ∨ GFψ {Du-F,Du-G}
≡ G(F¬φ ∨ Fψ) {Lemma}
≡ G(¬Gφ ∨ Fψ) {Du-G}
≡ G(Gφ→ Fψ) {Definition of →}
≡ G(φU(ψ ∨ ¬φ)) {Previous exercise}

3. GG(φ ∨ ¬ψ) ≡ ¬F (¬φ ∧ ψ). The proof is as follows.

GG(φ ∨ ¬ψ) ≡ G(φ ∨ ¬ψ) {Id-G}
≡ ¬¬G(φ ∨ ¬ψ) {Double negation}
≡ ¬F(¬φ ∧ ψ) {Du-G}
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4. F(φ ∧ ψ) ≡ Fφ ∧ Fψ. This equivalence does not hold. The counter-example is as follows.
Consider an infinite path π = s0s1(s2)

ω such that s0 |= ¬(φ ∧ ψ), s1 |= (φ ∧ ¬ψ) and
s2 |= (¬φ ∧ ψ). Observe that π |= Fφ ∧ Fψ, i.e., the right hand side formula holds, but
π ̸|= F(φ ∧ ψ), i.e., the left hand side formula does not hold.

5. Gφ ∧ XFφ ≡ Gφ. This holds. We prove both directions of the equivalence separately.

⇒ Fix arbitrary infinite path π such that π |= Gφ ∧ XFφ, from the semantics of ∧ it
follows immediately that π |= Gφ, which is what we have to prove.

⇐ Fix arbitrary infinite path π such that π |= Gφ. We need to prove that We need to
derive XFφ from Gφ. By definition of Gφ we know that π |= Gφ∧XFφ. For this, we
have to show that π |= Gφ, which follows immediately from the assumption, and that
π |= XFφ. Since π |= Gφ, for all i ≥ 0, π[i . . .] |= φ. Since π[1 . . .] |= φ, π[1 . . .] |= Fφ,
hence, as π = π[0 . . .], π |= XFφ.

6. Fφ ∧ XGφ ≡ Fφ. This does not hold. The counter-example is as follows. Consider the
path π = s0(s1)

ω such that s0 |= φ and s1 |= ¬φ. Note that π |= Fφ (since π[0 . . .] |= φ.
However, since for all i > 0, π[i . . .] ̸|= φ, π[1 . . .] ̸|= Gφ, hence π ̸|= Fφ ∧ XGφ, so the
equivalence does not hold.

7. GFφ → GFψ ≡ G(φ → Fψ). This does not hold. Consider the path π = s0(s1)
ω such

that s0 |= φ∧¬ψ and s1 |= ¬φ∧¬ψ. First, observe that π ̸|= GFφ, as, after the first step,
φ will never hold. Hence, according to the semantics of →, π |= GFφ → GFψ. However,
π[0 . . .] |= φ, and for all i ≥ 0, π[i . . .] ̸|= ψ, so for all i ≥ 0, π[i . . .] ̸|= Fψ. Therefore,
π ̸|= G(φ→ Fψ). Hence, the formulas are not equivalent.

8. XFφ ≡ FXφ. This equivalence holds. We prove this as follows.

XFφ ≡ X(trueUφ) {F-U}
≡ X trueUXφ {Di-XU}
≡ trueUXφ {Paths are infinite (total transition relation); all states satisfies true}
≡ FXφ {F-U}

Solution to Exercise 11.11 The value of last_m is 1 initially, so property msg_one holds trivially.
If you carefully study the counterexample of property msg_zero you will observe that the message
that the sender sends can get lost infinitely often, so it never actually reaches the receiver.

Solution to Exercise 11.12 We can extend the model with the following LTL property:

ltl p1 { <> WINS(grid, cX) || <> WINS(grid, cO) || <> DRAWS(grid)) };

Note that to satisfy the parser of the LTL formulas, we need to slightly modify the definition of
DRAWS to the following:

#define losesX (!WINS(grid, cX))
#define losesO (!WINS(grid, cO))

#define DRAWS(grid) \
( (grid[0] != cNone && grid[1] != cNone && grid[2] != cNone \
&& grid[3] != cNone && grid[4] != cNone && grid[5] != cNone \
&& grid[6] != cNone && grid[7] != cNone && grid[8] != cNone) \
&& losesX && losesO )

If we verify this property using

spin -a abp-unreliable-ltl.pml
gcc -DNOREDUCE -o pan pan.c
./pan -a
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the tool will report no errors.
Note that the equivalent property

ltl p2 { <> (WINS(grid, cX) || WINS(grid, cO) || DRAWS(grid)) };

will also lead to complaints of the tool because it fails to properly transform the formula internally.
This indicates some restrictions in how we can formulate requirements in Spin, that we sometimes
need to workaround by using an equivalent formula.

Solution to Exercise 12.1 This could, for instance, be modelled using the following LTS.

s0

s1

s2s3

open

push start

close

push stop

τ

Solution to Exercise 12.2 As mnemonic, we use state names that resemble the content of the
queue, e.g., sϵ is the state with the empty queue, which is the initial state of the system. State s01
is the state in which the queue contains values 0 and 1, where 1 was the value that was inserted
first. The LTS we get is then the following.

sϵs0 s1s00

s10

s01

s11

in0 in1in0

in1

out0

in0

in1

out1out0

out0

out1

out1

Solution to Exercise 12.3

1. Some example trances are:

• ϵ
• turn on
• turn on malfunction
• malfunction repair
• turn on malfunction repair
• turn on turn off turn on malfunction repair

2. As the labelled transition system contains cycles, there are infinitely many traces.

Solution to Exercise 12.4

1. ignition on engine on

2. ignition on engine on ignition off engine off
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Solution to Exercise 12.5

1. Reach(s0) = {s0, s1, s2, s3}
2. s after b a = {s1}
3. s after a a = {s1, s2}
4. s after a a b = {s3}
5. s after a b = ∅

Solution to Exercise 12.6

1.

on

off

2. We change the LTS from the previous exercise such that switching on/off becomes a two-
step process, as shown in the following LTS.

switch on on

switch offoff

3. We next add the non-deterministic choice after switching on.

switch on
i

i

on

switch off

off

break

Solution to Exercise 12.7

s0, t0

s1, t0

s0, t1

s1, t1

s2, t0

s0, t2

s2, t2

s1, t2

s2, t1

in0

in1

com0

out0

in0

in1

out0

com1

out1

in1

in0

out1

out1

out0

Solution to Exercise 13.1

1. The transitions are:

• (P1, a, ∅, ∅,P2)
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• (P2, b, ∅, ∅,Q1)
• (P2, a, ∅, ∅,U)
• (Q1, e, ∅, ∅,U)
• (U, e, ∅, ∅,P2)
• (U, c,S2, ∅,Q1)
• (S1, d, ∅, ∅,S2)
• (S2, f, ∅, ∅,S1)
• (T1, c, ∅, ∅,T2)
• (T2, c, ∅, ∅,T1)
• (Q, f, ∅, ∅,P1)

2. We calculate the scope for all transitions:

• scope((P1, a, ∅, ∅,P2)) = lcsoa({P1,P2}) = root
• scope((P2, b, ∅, ∅,Q1)) = lcsoa({P2,Q1}) = root
• scope((P2, a, ∅, ∅,U)) = lcsoa({P2,U}) = root
• scope((Q1, e, ∅, ∅,U)) = lcsoa({Q1,U}) = Q
• scope((U, e, ∅, ∅,P2)) = lcsoa({U,P2}) = root
• scope((U, c,S2, ∅,Q1)) = lcsoa({U,Q1}) = Q
• scope((S1, d, ∅, ∅,S2)) = lcsoa({S1,S2}) = S
• scope((S2, f, ∅, ∅,S1)) = lcsoa({S2,S1}) = S
• scope((T1, c, ∅, ∅,T2)) = lcsoa({T1,T2}) = T
• scope((T2, c, ∅, ∅,T1)) = lcsoa({T2,T1}) = T
• scope((Q, f, ∅, ∅,P1)) = lcsoa({Q,P1}) = root

3. We summarize the information in the following table. For convenience we also include the
scope.
Transition Configuration Event Scope UExt Ext UEnt Ent
(P1, a, ∅, ∅,P2) {P1} a root P1 {P1} P2 {P2}
(P2, b, ∅, ∅,Q1) {P2} b root P2 {P2} Q {Q,Q1}
(P2, a, ∅, ∅,U) {P2} a root P2 {P2} Q {Q,U, S,T, S1,T1}
(Q1, e, ∅, ∅,U) {Q,Q1} e Q Q1 {Q1} U {U, S,T, S1,T1}
(U, e, ∅, ∅,P2) {Q,U, S,T, S1,T1} e root Q {Q,U, S,T, S1,T1} P2 {P2}
(U, c, S2, ∅,Q1) {Q,U, S,T, S2,T1} c Q U {U, S,T, S2,T1} Q1 {Q1}
(S1, d, ∅, ∅, S2) {Q,U, S,T, S1,T1} d S S1 {S1} S2 {S2}
(S2, f, ∅, ∅, S1) {Q,U, S,T, S2,T1} f S S2 {S2} S1 {S1}
(T1, c, ∅, ∅,T2) {Q,U, S,T, S1,T1} c T T1 {T1} T2 {T2}
(T2, c, ∅, ∅,T1) {Q,U, S,T, S1,T2} c T T2 {T2} T1 {T1}
(Q, f, ∅, ∅,P1) {Q,U, S,T, S1,T2} f root Q {Q,U, S,T, S1,T2} P1 {P1}

4. In configuration conf = {Q,U,S,T,S2,T1} the two transitions tr1 = (U, c,S2, ∅,Q1) and
tr2 = (T1, c, ∅, ∅,T2) are enabled. For tr1 we have UExt(tr1) = U, and Ext(tr1, conf) =
{U,S,T,S2, T1}. For tr2 we have UExt(tr2) = T1, and Ext(tr1, conf) = {T1}. The exit sets
overlap, so these to transitions conflict with each other.

Solution to Exercise 13.2

1. The scope of a transition is the least common strict or-ancestor of the source and the target
state.

• scope((P1, a, ∅, ∅,P2)) = lcsoa({P1,P2}) = P
• scope((Q1, c, ∅, {d},U)) = Q
• scope((S1, d, ∅, {e},S2)) = S
• scope((U, e,S2, {f},P2)) = root

2. The scope of a transition is the least common or-ancestor of the source and the target state.

• Situation ({P,P1}, ∅) with dispatched event a. The unique exit state is P1, the exit
set is {P1}, the unique enter state is P2, the enter set is {P2}.

• Situation ({Q,Q1}, ∅) with dispatched event c. The unique exit state is Q1, the exit
set is {Q1}, the unique enter state is U, the enter set is {U,S,T,S1,T1}.
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• Situation ({Q,U,S,T,S1,T1}, ∅) with dispatched event d. The unique exit state is S1,
the exit set is {S1}, the unique enter state is S2, the enter set is {S2}.

• Situation ({Q,U,S,T,S2,T1}, ∅) with dispatched event e. The unique exit state is Q,
the exit set is {Q,U,S,T,S2,T1}, the unique enter state is P, the enter set is {P,P2}.

Solution to Exercise 13.3

1. For configuration ({P,P1}, {a}) with dispatched event b we have the following enabled
transitions: (P, b, ∅, ∅,Q) with exit set {P,P1}, and enter set {Q,Q1}. This transition is
fireable (there are no conflicts). There is only one maximal micro-step, which consists of
this single transitions.

2. For configuration ({P,P1}, {b}) with dispatched event a we have the following enabled
transitions: (P1, a, ∅, ∅,P2) with exit set {P1}, and enter set {P2}. This transition is
fireable (there are no conflicts). There is only one maximal micro-step, which consists of
this single transitions.

3. For configuration ({Q,U,S,T,S1,T1}, ∅) with dispatched event d, we have two enabled
transitions:

• (S1, d, ∅, {e},S2) with exit set {S1}, and enter set {S2}.
• (T1, d, {S1}, ∅,T2) with exit set {T1}, and enter set {T2}.

Both transitions are fireable, the transitions do not conflict. This results in one maximal
micro-step containing both transitions.

4. For configuration ({Q,U,S,T,S2,T2}, ∅) with dispatched event e we have two enabled tran-
sitions:

• (S2, e, ∅, ∅,S1) with exit set {S2}, and enter set {S1}.
• (U, e, ∅, {f},P2) with exit set {Q,U,S,T,S2,T2}, and enter set {P,P2}.

Since S2 is a strict descendant of U, only the first transition is fireable. Hence, this results
in one maximal micro-step, which consists of the first transition.

Solution to Exercise 13.4 The environment provides triggers {b}, {c}, and subsequently noth-
ing. The corresponding part of the LTS is the following. From the bottom three states, the
execution could continue if the environment provides additional triggers. Note that the individ-
ual steps have been precomputed in the previous part of the exercise. We left out root in the
configurations in the LTS for the sake of conciseness.

({P,P1}, ∅)

(P,P1, {b})

(P,P1, ∅, b)

({Q,Q1}, ∅)

({Q,Q1}, {c})

({Q,Q1}, ∅, c)

({Q,U, S,T, S1,T1}, {d})

({Q,U, S,T, S1,T1}, {d})

({Q,U, S,T, S1,T1}, ∅, d)

({Q,U, S,T, S2,T2}, {e})

({Q,U, S,T, S2,T2}, {e})

({Q,U, S,T, S2,T2}, ∅, e)

({P,P2}, {f})

({P,P2}, {f})

({P,P2}, ∅, f)

({P,P2}, ∅)

({Q,U, S,T, S1,T2}, ∅)

{b} b b/∅ {c} c c/{d} ∅

d

d/{e}∅e

e/∅

e/{f}∅ff/∅

Solution to Exercise 14.1

1. traces(q) = traces(q0) = {ϵ, but , but · liq , but · choc}
2. {r1, r2}
3. {r4}
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4. {v0, v1}
5. {v0, v1}

Solution to Exercise 14.2

1. true, since r2 cannot do liq , and does not have an outgoing τ -transition.

2. false

3. r0 after but = {r1, r2}, since in r1 we can do liq , and in r2 we can do but , this is false.

4. This is a tricky one. Recall that v0 after but = {v0, v1}. Since in v0 it is not possible to do
a τ or a liq transition, v0 refuses {liq}, and hence {v0, v1} refuses {liq}, so this is true.

Solution to Exercise 14.3 Only LTS v is an IOTS. In every reachable state ?but is enabled,
which is the only input in LI . All other LTSs have at least one state in which ?but is not enabled.

Solution to Exercise 14.4 States p0, p2, q0, q2, q3, r0, r2, r3, r5, u0, and v0 are quiescent, since
they do not have an output, nor τ .

Solution to Exercise 14.5 Recall that we identify STraces(r) = STraces(r0). STraces(r) =
{ϵ, δ, ?but , ?but · δ, ?but · !liq , ?but · ?but , ?but · !liq · δ, ?but · ?but · !choc, ?but · ?but · !choc · δ}. Note
that, technically, this is not the full set of suspension traces, since each occurrence of δ can be
repeated infinitely many times.

Solution to Exercise 14.6

1. out(s0) = {δ}
2. out(s1) = {!liq}
3. out(s2) = {!choc}
4. out(s3) = {δ}
5. out({s0, s1}) = {δ, !liq}
6. out({s1, s2}) = {!liq , !choc}
7. out({s1, s2, s3}) = {δ, !liq , !choc}
8. out({t0} after ?but) = out({t1, t2, t3}) = {!liq , !choc, δ}
9. out({t0} after ?but · ?but) = out({t1, t3}) = {!liq , δ}

10. out({t0} after ?but · δ) = out({t3}) = {δ}
11. out({t0} after ?but · !choc) = out({t4}) = {!choc}

Solution to Exercise 14.7 No, the implementation does not conform to the specification. For
t ioco s to hold, we need to have ∀σ ∈ Straces(s).out(t after σ) ⊆ out(s after σ). Now consider
for instance the suspension trace σ = ?but · ?but . We compute the following output sets:

• out(t after σ) = {!liq , δ}
• out(s after σ) = {!liq , !choc}

Hence out(t after σ) ̸⊆ out(s after σ), and thus not t ioco s.

Solution to Exercise 14.8 No, the implementation does not conform to the specification. Recall
that i ioco s = ∀σ ∈ STraces(s).out(i after σ) ⊆ out(s after σ). The trace ?but2 · ?but1 is a
suspension trace of the specification, i.e., ?but2 · ?but1 ∈ Straces(s). We have:

• out(i after ?but2 · ?but1 ) = {δ}
• out(s after ?but2 · ?but1 ) = {!liq}
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so, out(i after ?but2 · ?but1 ) ̸⊆ out(s after ?but2 · ?but1 ), thus not i ioco s.

Solution to Exercise 14.9

1. • p is a TTS, it satisfies all requirements for test cases.
• q is not a TTS. From q0 it can provide an input, but it also checks for quiescence.
This combination is not allowed.

• r is not a TTS. From r0 it provides an input, but is does not specify what to do for
any of the outputs. The latter should be specified.

• s is not a TTS. From s1 it cannot provide any inputs, therefore it must specify what
to do for all outputs and quiescence. Since it does not check for quiescence, this is not
a test case.

2. Note that p is a TTS. Removing the transition p0
!choc−−−→ p3 leads to the situation where not

all outputs are handled from p0, and the result is not a TTS.

3. Removing the transition p1
!liq−−→ p4 leads to the situation where not all outputs are handled

from p1, and the result is not a TTS.

Solution to Exercise 14.10 A test run is an execution starting in t0⌉|i0. We have the following
executions:

• t0⌉|i0
but−−→ t1⌉|i1

liq−→ t4 = pass⌉|i3
• t0⌉|i0

but−−→ t1⌉|i2
τ−→ t1⌉|i3

δ−→ t6 = fail⌉|i3
• t0⌉|i0

but−−→ t1⌉|i2
choc−−−→ t5 = fail⌉|i4

Solution to Exercise 14.11 The question implies that we need to apply all rules in the algorithm
at least once, since without applying rule 1 there is no pass, without rule 2, no ? will be in the
test case, and without rule 3 there will be no θ. There are many correct answers. The simplest
test case that we can come up with applies rule 2 and rule 3 exactly once.

If we first apply rule 2 and then rule 3, we obtain the following test case.

t0

t1 t2

fail

t3

fail

t4
pass

t5
pass

t6

fail

?but
!liq

!choc

!liq
!choc

θ

First applying rule 3 and then rule 2 results in the following.

t0

t1

fail

t2

fail

t3

t4
pass

t5

fail

t6

fail

!liq
!choc

θ

?but
!liq

!choc
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Solution to Exercise 14.12 Observe that the specification is similar to the specification in
Figure 14.5. The difference is in the moment the choice is made. In order to determine the valid
continuation, in the test generation algorithm we keep track of all states the specification can be in.
For instance, when starting with a ?but action, the specification can be in s0 after ?but = {s1, s2};
from this set of states, both !choc and !liq are valid continuations.

The test cases provided in the answer to Question 14.11 are hence also valid for this specifica-
tion.

Solution to Exercise 14.13

1. • Implementation 1 is not ioco-conforming to the specification spec, since out(spec after
?button · δ · ?button) = {!cappucino}, while out(impl1 after ?button · δ · ?button) =
{!cappucino, !coffee, !espresso}. So {!cappucino, !coffee, !espresso} ⊈ {!cappucino}.

• Implementation 2 is not ioco-conforming to spec, since out(impl2 after ?button ·
?button) = {!cappuccino, !coffee, !espresso, δ}, while out(spec after ?button·?button) =
{!cappuccino, !coffee, !espresso}. So clearly {!cappuccino, !coffee, !espresso, δ} ⊈ {!cappuccino, !coffee, !espresso}.

• Implementation 3 is ioco-conforming to spec. Note that the graph of impl3 is a sub-
graph of spec and the quiescent states of impl3 are a subset of the quiescent states of
spec.

• Implementation 4 is not ioco-conforming to spec, since out(impl4 after ?button ·
?button) = {!espresso, !coffee, !cappuccino, δ}, while out(spec after ?button·?button) =
{!cappuccino, !coffee, !espresso}. So {!espresso, !coffee, !cappuccino, δ} ⊈ {!cappuccino, !coffee, !espresso}.

• Implementation 5 is ioco-conforming to spec. Its graph is a sub-graph of that of spec
and no new quiescent states are added.

2. The following defines a sub-graph of spec without new quiescent states, and is ioco-
conforming to the specification.

i0

i3

?button

?button

!espresso !coffee

3. The following implementation is not ioco-conforming to the specification because after the
trace ?button, the output set of the implementation contains quiescence δ which is not in
the output set of the specification after ?button.

i0 i1 i2
?button ?button

!cappucino

!coffee

?button

4. We can cover the ioco-incorrect implementations using the following two test cases.

The first test case covers impl2 and impl4.
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fail fail fail

pass pass fail

fail pass pass pass

!button ?coffee

?espresso

?cappuccino

!button ?coffee

?espresso

?cappuccino

θ
?coffee

?espresso

?cappuccino

The second test case covers impl1.

fail fail fail

pass pass fail

fail fail fail

fail fail fail pass

!button ?coffee

?espresso

?cappuccino

θ ?coffee

?espresso

?cappuccino

!button ?coffee

?espresso

?cappuccino

θ
?coffee

?espresso

?cappuccino

5. Test cases are sound w.r.t. to the ioco-relation, if fail results are only obtained in case the
implementation is not ioco-correct.

6. The test suite composed of the two tests described previously is sound w.r.t. to the ioco-
relation, since pass results are obtained only in case of correct ioco-implementations. In
case of incorrect implementations, fail results are given.

7. Exhaustiveness of a test suite implies that any non-conforming implementation can be
detected (which means that there are no errors that can never be detected).

8. Test suite composed of the tests we generated is not exhaustive (there might be non-
conforming implementations, which cannot be tackled by the test suite). In our case, an
exhaustive test suite requires infinitely many test-cases.

Solution to Exercise 14.14

1. The implementation is not ioco-conforming to the specification. In the specification,
out(spec after ?but ·!r!̇y) = {!g}, in the implementation, out(impl after ?but ·!r!̇y) = {!g, δ}.

2. An LTS implementing the described system is the following:
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i0

i1

i2

i3

?but

!r

?but

!y

?but !g

?but

3. Such an implementation i is an ioco-conforming to the specification, since out(i after ?but)
is a subset of out(spec after ?but). In a similar way, we can easily verify out(i after ?but ·!r) ⊆
out(spec after ?but ·!r), out(i after ?but ·!y) ⊆ out(spec after ?but ·!y), etc. An alternative
way to look at this is to observe that the implementation is a subgraph of the specification
(but with each state a self-loop labelled ?but to ensure input-enabledness); and there are
no additional quiescent states.

4. The LTS described is the following.

i0

i1

i2

i3

?but

!r

?but

!y

?but

!g

?but

To determine whether the implementation conforms to the specification, we only need to
consider the suspension traces of the specification. Any of the suspension traces ?but ·!r·!y·!g · · ·
interspersed with ?but at arbitrary intermediate places, or terminated after any of the ac-
tions, are not suspension traces of the specification. We therefore do not need to check the
corresponding outputs. All other suspension traces are part of the implementation, and
the outputs of the implementation are allowed by the specification. The implementation
therefore conforms to the specification.

Solution to Exercise 14.15

1. {s0, s1}
2. Only implementation j conforms to the specification. For implementation i consider the

trace ?eur2 · ?eur1 · !red , after this trace we will have an output of δ, no output, whereas
in the specification we would have the output !back .
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For implementation j we only have to consider traces starting with ?eur2 , since the spec-
ification cannot start with ?eur1 (it is underspecified in that regard). For the remaining
states we do not have new quiescent states. And for the other traces we will not have new
other outputs.

3. The test case is the following:

failfail fail pass

?back
?red

?product

θ

4. The test case is the following:

fail fail fail

fail fail fail

pass pass fail fail

!eur2
?red

?product

?back

!eur1
?red

?product

?back

?product
?red

?back

θ

5. One such implementation is the following.

i0 i1

i2 i3

?eur2
?eur1

?eur1

?eur2

!back

?eur1
?eur2 !red

?eur1
?eur2

6. One such implementation is the following.

i0 i1

i2 i3

?eur1
?eur2

?eur2

?eur1

!back

?eur1
?eur2 !red

!product

?eur1
?eur2
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