

Optimization of the TURTLE's acceleration

Bachelor End Project Luuk Poort

Tech United

Where innovation starts

Content

- Goal
- Theory
- Hardware
- Modelling
- Validation
- Conclusion
- Discussion

Questions

© BART VAN OVERBEEKE

Technische Universiteit **Eindhoven** University of Technology

TU

Problem

• The acceleration of the TURTLE is too limited by tipping and slipping

Research question

- *How can the acceleration of the TURTLEs be improved?*
 - 1. What parameters influence the acceleration of the TURTLE and how?
 - 2. What are the current values of these influencing parameters?
 - 3. In what way can these parameters be changed to improve acceleration?
 - 4. Can the TURTLE's acceleration be made dependent on its current state?

Theory: Slip

- Force and moment equilibrium on wheelSlip when exceed maximum value
- Always slip
- Slip can become unstable

$$\lambda = \frac{v_{wheel}}{F_{a}} \underbrace{\sum_{v_{wheel}}^{\omega_{wheel}}}_{v_{wheel}} \frac{r_{wheel}}{n}$$

Technische Universiteit

University of Technology

Eindhoven

Theory: TURTLE dynamics

• Force and moment equilibrium

•
$$\vec{F}_A$$
 \vec{F}_B \vec{F}_C a α

•
$$3 \text{ eq.} \rightarrow \qquad m \ a \ \vec{n}_a - m \ \vec{g} = \vec{F}_A + \vec{F}_B + \vec{F}_C$$

 $3 \text{ eq.} \rightarrow \qquad I_{zz} \ \alpha \ \vec{n}_z = \vec{A}^G \times \vec{F}_A + \vec{B}^G \times \vec{F}_B + \vec{C}^G \times \vec{F}_C$
 $3 \text{ eq.} \rightarrow \qquad \begin{bmatrix} F_{i,x} \\ F_{i,y} \\ 0 \end{bmatrix} = \vec{n}_i \ \begin{vmatrix} F_{i,x} \\ F_{i,y} \\ 0 \end{vmatrix} = F_{a,i} \ \vec{n}_i \qquad \text{with } i =$
 $1 \text{ eq.} \rightarrow \qquad \mu = \max_{i=A,B,C} \left(\ \begin{vmatrix} F_{a,i} \\ F_{n,i} \end{vmatrix} \right)$
 $1 \text{ eq.} \rightarrow \qquad \alpha = f(a) = k \ a$

TU/e Technische Universiteit Eindhoven University of Technology

Hardware

- Weighted all components
- Assigning densities to AutoDesk Inventor model

Component	Mass (kg)
PC	1.757
Beckhoff Module	1.238
$RE25_{2}0W_{2}4V$	0.357
Camera (incl. lens)	0.149
RE40_150W_24V	0.838
Housing	1.490
Kinect II	0.619
Kinect Printbox	0.2
Picture Housing	0.3

Properties	Value
m~[kg]	36.0
$I_{zz} \ [kg \ m^2]$	0.799
$COG \ [mm]$	$[-3.46, \ 1.85, \ 165.59]^T$
$ec{A^0}~[mm]$	$[97.12, \ 168.23, \ 0]^T$
$ec{B^0} \; [mm]$	$[96.63, -167.36, 0]^T$
$ec{C}^0 [mm]$	$[-206.25, 0, 0]^T$

- Almost symmetrical
- Height of COG no significant influence

- Significant influence of angle of acceleration
- Linear relations

$$a = \frac{C_2}{\sin \psi - C_1 \cos \psi}$$

- Friction factor has significant influence
- Tipping becomes limiting from $\mu = 1.0$

- Significant influence of angular acceleration
- Direction independent
- Shape changes with k in $\alpha = k a$

Validation: slip detection

- Three methods
 - Motor effort \rightarrow Inconsistent
 - Speed
- \rightarrow unreliable over time
- Acceleration \rightarrow noisy \rightarrow Filtering

12 BEP Progress Luuk Poort

Validation: data analysis

- Filtering with moving average filters
- Rotation of accelerometers
- Transformation to wheel accelerations
- Comparison encoders to IMU

Validation: comparison

- No clear dependence on the angle
- No linear relations
- Slip per wheel in correct intervals
- Intervals not correct size

Conclusion

Parameter	Influence	Value
$m \; [kg]$	None	36.0
$COG \ [mm]$	Insignificant	$[-3.46, \ 1.85, \ 165.59]^T$
$I_{zz} \ [kg \ m^2]$	Insignificant	0.799
$\psi \;[rad]$	Significant \pm	$0 \ge \psi \ge 2\pi$
μ [-]	Significant $+$	0.5
$k \ [rad/m]$	Significant –	$k \in \mathbb{R}$

e Technische Universiteit Eindhoven University of Technology

TU

Discussion

Technische Universiteit

Eindhoven University of Technology

Τι

- Slip model
- Speed dependence
- Filtering
- Acceleration difference

Recommendations

- Validation should be redone
- Model should be improved
- Friction factor might be improved
- Experimental maxima

Questions?

Technische Universiteit **Eindhoven** University of Technology

TU

Max angular acceleration per angle with μ and h as 0.5 and 165

Technische Universiteit **Eindhoven** University of Technology

TU

Technische Universiteit **Eindhoven** University of Technology

TU

Technische Universiteit **Eindhoven** University of Technology

TU

Technische Universiteit **Eindhoven** University of Technology

TU

- Almost symmetrical
- Height of COG no significant influence
- Dependent on the angle of acceleration

Angle range	Influence of height on acceleration
$-30 < \psi < 30$	negative
$30 < \psi < 90$	positive
$90 < \psi < 150$	negative
$150 < \psi < 210$	positive
$210 < \psi < 270$	negative
$270 < \psi < 330$	positive

Technische Universiteit

University of Technology

Eindhoven

2