J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Bachelor end project Online mounting calibration around the vertical axis of the Kinect sensor

J.M. van Willigen

Department of Mechanical Engineering Technical University Eindhoven

July 6, 2017

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

J.M. van Willigen

Challenges -

Kinect

Outline

Problem sketch & Goal

2 Approach

Challenges - Solutions Elaboration

3 Data analysis Kinect Omnivision

4 Implementation

5 Verification Ball laying still

Shot/Pass

6 Conclusions & Recommendations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

J.M. van Willigen

Problem sketch & Goa

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Goal

Problem sketch

- TURTLE & frame
- Kinect unused
- Online mounting calibration
 - Horizontal axes
 - Vertical axis

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Goal

• Develop an online mounting calibration around the vertical axis of the Kinect.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Approach

- Robot coordinate frame
- Kinect coordinate frame
- Omnivision coordinate frame

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Use ball position

J.M. van Willigen

sketch & Goal

Challenges -Solutions

Kinect

Ball laying still

Approach **Challenges - Solutions**

Challenge	Solution
Delay	Constant θ
	 RefBox task
	 Shot/Pass
Offset Kinect and	Goniometry
Omnivision	
Inaccuracy	Kalman filter
Dislocations due to	Collision detection
collisions	Filter reset
False-positives	Compare Kinect and
	Omnivision ball
Ball not in measurement	Greenfield analysis
space	

J.M. van Willigen

Problem sketch & Goal Problem sketch

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Approach Elaboration: Goniometry

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Omnivision

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Approach Elaboration: Kalman filter

• The system:

$$x_k = Ax_{k-1} + w_k$$
$$z_k = Cx_{k-1} + v_k$$

•
$$x_k = \hat{\theta}_d$$
, $z_k = \theta_d$, $A = 1$, $C = 1$, $w_k = 0$

• v_k to be determined

3

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Approach Elaboration: Collision detection

Threshold: 160 m/s^2

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

J.M. van Willigen

Problem sketch & Goal Problem sketch

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivision

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Data analysis Kinect

J.M. van Willigen

Problem sketch & Goa

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisi

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Data analysis

Standard deviation: 0.014 Variance: $2.0 * 10^{-4} \text{ rad}^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

J.M. van Willigen

Problem sketch & Goal Problem sketch

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Omnivision

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Data analysis Omnivision

・ロト ・ 一下・ ・ ヨト・

э

J.M. van Willigen

Problem sketch & Goa

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Omnivision

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Data analysis

э

Standard deviation: 0.018 Variance: $3.2 * 10^{-4} rad^2$

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Implementation

Verification

Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Implementation

- 1 Collision detection
- 2 RefBox check
- 8 Ball selection
- **4** Goniometry to calculate θ_d

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- 6 Kalman filter
- 6 Correction

J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisio

Implementation

Verification

Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Verification

Two cases:

1 Ball laying still with collision

・ロット (雪) (日) (日) (日)

2 Shot/Pass

J.M. van Willigen

Problem sketch & Goal

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisi

Implementation

Verification

Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Verification

Ball laying still with collision

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへで

J.M. van Willigen

Problem sketch & Goal

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Omnivisio

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Verification

Shot/Pass

Shot: too little measurements

Pass: still an offset

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

> J.M. van Willigen

Problem sketch & Goal Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis Kinect

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Conclusions & Recommendations

Conclusions

- Ball laying still: Works
- Shot: Does not work
- Pass: Needs improvement
- Algorithm deals well with collisions
- Greenfield analysis

Recommendations

- Test in game
- Optionally adjust algorithm for Passes to work
- Combine with mounting calibration horizontal axes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

J.M. van Willigen

Problem sketch & Goal

Problem sketch Goal

Approach

Challenges -Solutions Elaboration

Data analysis

Kinect Omnivisi

Implementation

Verification Ball laying still Shot/Pass

Conclusions & Recommendations

Questions

Questions?

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○