
Mobile Robot Control exercises tools
During the Mobile Robot Control (MRC) course you will encounter many tools, systems and
concepts that you are currently unfamiliar with. This may be daunting at first, but soon you
will notice the strengths of each of the tools and find out how they work together to allow you
to program a real, physical robot. The following tutorials are aimed at getting you up speed
with these tools as fast as possible.

Let's start with an overview of the tools we will be using and the roles they play within your
project:

Alright, let's get our hands dirty. Time to install Ubuntu on your computer.

Installation
Installing VirtualBox
Ubuntu is an operating system, much like windows and MacOS. It is what makes a computer
usable. Running a different operating system is like using a different computer altogether. In
this course we recommend using a virtual machine to run ubuntu.

On your laptop, download virtualbox from their website:

https://www.virtualbox.org/wiki/Downloads

run the installer, and follow the instructions.

Virtualbox is the program that will create and run our virtual machine. A virtual machine is
best seen as a piece of software that behaves as a virtual computer, which will thus allow us
to install (and use) Ubuntu within windows.

Ubuntu: the Operating System we will be using. Ubuntu is a popular Linux distribution.
C++: is the programming language we will be using. This means that your program, or
code, will be written in C++.
git: is a software versioning and revision control system. You will use it to share your
project code between different group members, while maintaining a file version history.
Think of it as Dropbox.
VSCode: an Integrated Development Environment (IDE) for C++. All you need to create
a C++ program is a simple text editor and a C++ compiler. However, it can become
difficult to manage large projects, trace back where compile errors are coming from,
etc. Think of VSCode as a very advanced text editor that understands C++ and makes
programming C++ a lot nicer.

https://www.virtualbox.org/wiki/Downloads


After installing virtualbox, make sure you download a copy of the desktop image of Ubuntu
to a folder on your windows machine:

https://releases.ubuntu.com/20.04/

Setting up your virtual machine

Start creating your VM by opening virtualbox and selecting the blue star-like icon labeled
"New".

To finish the configuration of your VM take the following steps:

Confirm your changes by clicking OK.

Installing Ubuntu

1. In the menu that pops up you will see four tabs. Under the "Name and Operating
System" you can give your VM a descriptive name. You can leave the Machine Folder
at its default value. Select the ubuntu image you downloaded in the previous step.
Make sure you select the proper type and version in the dropdowns below. The Type
should be set to Linux, the Version should be set to Ubuntu (64-bit). Also check the box
to skip unattended installation.

2. We dont need to do anything in the tab "Unattended Install", after all we chose to skip
it.

3. In the tab "Hardware" you can choose the Memory Size. Select the amount of memory
available to your VM. Make sure you select a value greater than 4096 MB. While
making your selection, make sure you stay within the green boundary indicated
underneath the slider. Select the amount of processors available to your VM,
depending on the hardware of your PC. Generally, more is better.

4. In the tab "Hard Disk", select "Create a virutal Hard Disk Now". Select the size and
location of your virtual hard disk. It is recommended to allocate at least 40 GB,
however, more is generally better. Make sure you have enough disk space at the
specified location. You may want to move your virtual disk to a different physical drive.
Select VDI. for the File Type.

5. Click finish.

1. Right click on your VM
2. Select settings, indicated by an orange cog, in the context menu
3. Go to Display in the sidebar
4. Set the amount of Video Memory to (at least) 64 MB
5. Go to Network in the sidebar
6. set "Attached to" to Bridged Adapter. Under Name select your wireless connection. e.g.

Intel(R) Wi-Fi 6 AX200 160MHz

https://releases.ubuntu.com/20.04/


Start your VM by clicking Start. The VM will boot to the installation screen. Make sure you
follow the instructions to install Ubuntu.

Post-install configuration
When you are done installing Ubuntu, you reach the Ubuntu login screen and will be
prompted to type in your password. Login to reach the Ubuntu desktop.

After login you will be prompted to perform some final configuration, like logging in to your
Online Accounts. Configure these settings if you like, you can also skip them.

When promted to upgrade to a newer version of Ubuntu. Choose Don't Upgrade.

When promted to install updated software, choose "Install Now". This can also be done later
by typing the following command into the terminal:

After configuration, we need to do a few final steps:

You've now successfully installed Ubuntu. To check that everything has gone according to
plan, go to your desktop. When you haven't changed your wallpaper, it should show you a
picture that looks like a leopard. If you see a picture of a jellyfish or a beaver (or anything
else) you've installed the incorrect version. We ask you kindly to reinstall the correct version
of ubuntu (20.04).

Erase disk  

When prompted you can select Erase disk and install Ubuntu without affecting your
windows install since you are working on a virtual disk.

sudo apt-get update && sudo apt-get upgrade

1. In the taskbar of VirtualBox click devices
2. Click Insert Guest Additions CD image
3. On the menu that appears within Ubuntu click Run, and type your password.
4. Reboot your virtual machine.
5. Set the size of the window of your virtual machine by right clicking on the desktop and

selecting display options. Choose the resolution that matches your monitor.

sometimes the approach above fails at step 3. In that case type the
following command in a terminal and press enter. You can skip step 3

sudo apt-get install virtualbox-guest-additions-iso



The terminal

We will now introduce you a tool called the terminal. On Ubuntu press ( ctrl + alt + t ). Do you
feel like a hacker already? This is the terminal, it allows you to interact with your computer
via text. For example try typing

It will show you all the folders in your current directory, including the folders Desktop
Documents Downloads Music Pictures Public Templates Videos

Lets make a folder for your course files:

mkdir stands for "make directory". We are telling the computer to make a directory called
"mrc". To check that it has indeed been created use ls

To navigate to this new directory we use the command cd  which stands for "change
directory". In the terminal type:

You will notice that the prompt has changed from <username>@<computername>:~$  to
<username>@<computername>:~/mrc$ . This indicates the current directory. ~  is short for
/home/<current user> .

ls

mkdir mrc

cd mrc



Terminal Colors

By default, the terminal in Ubuntu only uses white letters on a dark background. However, it
can be quite convenient to allow the use of multiple text colors. For example, folders, files
and executables are then displayed in different colors when using the command ls.

To enable text color in a terminal:

Terminator
You will soon find out that you will have to work in multiple terminals in parallel. A convenient
tool to avoid having a large amount of terminals is Terminator, a program that allows you to
have multiple terminals in one window. You can install it via the Ubuntu software center, or
from the terminal:

1. Open the file .bashrc in your homefolder, for example using: gedit ~/.bashrc  in a
terminal.

2. Uncomment the following line: #force_color_prompt=yes  by removing the #.
3. Save and exit. Now if you start a new terminal, you will have a colored prompt.

sudo apt-get install terminator



Now close the terminal and open a new one. What is this!? It looks like a terminal but it is a
little different. press ( ctrl + shift + e ). The terminal splits vertically! Wow, try it again. (ctrl +
shift + e), and it splits into more. You now have three terminals to work with.
You can move between them with your mouse or by pressing ( alt + <arrow_key> ). Your
active window is highlighted red. That is the one you will type into.

But our terminals are getting quite narrow, it would be nice if we could also split them
horizontally. Try selecting the largest terminal and pressing ( ctrl + shift + o )

When you need many terminals at once Terminator can help you to keep them organized.

installing the EMC environment

To get you up speed as soon as possible, we created a nice little installer script that will set-
up your computer in no-time. It will download, install and compile all necessary software and
if all goes well, you can start using our robot simulator within 30 minutes. Just do the
following:

That's it! The installer may ask for confirmation a few times because it has to install some
programs system wide. Just enter your password, and you'll be good to go!

Using the simulator
During the course, we have many groups and only one robot, so test time on the robot is
scarce. Fortunately, we have a virtual (software) representation of the robot that can be used
to simulate the robot. At the moment it:

emc?  

the mrc course used to be called emc, that is why the software framework we use is still
called emc

1. Open a terminal
2. Download the install script:

wget https://raw.githubusercontent.com/tue-robotics/emc-env/master/install.bash

3. And run it

source install.bash

Simulates the movement of the robot
Simulates the laser data of the robot, created by the virtual environment



This should already be enough to get you started, and more will be added later (odometry,
moving doors, better dynamics, etc).

Updating the simulator

Before you start working with the simulator, make sure you have our latest version by
running

This will download the latest changes and compile the updated software (framework and
simulator). We will notify you when we made changes to the software such that you can run
the updater, but feel free to run the command whenever you want.

Starting the simulator
Open a terminal and run

That's it! The simulator has now been started, although we can't see it yet.

Visualization

To visualize the simulator and our robot just run

This pops up a visualization window showing the robot in the virtual world. This shows how
the world is (at least in simulation...), your robot will not always have access to this
information.
We can also see how the robot perceives the world through its sensors. You can see the
LRF data projected in the world and you can probably guess what surface each points

Provides a simple visualization

mrc-update

A word on ROS  

As was already stated before, you will not be using ROS in this course, unless you
really want to use it yourself. However, secretly the provided tools are build on top of
that; the inter-process communication to be more specific. Don't worry about it too
much. Enough about ROS, let's start the simulator!

mrc-sim

sim-rviz



reflects. See how the laser data changes even if the robot is standing still: this is the
simulated noise added to the data.

Controlling the robot

Now, as you can see, not much is happening. The robot is standing still in a static
environment. Let's change that! A first simple way to test the simulator is by controlling the
robot using your keyboard. Just run:

and you will be able to move the robot forward and backward with 'w' and 's', you can rotate
the robot using 'a' and 'd' and you can stop movement with any other key.

The simulator is not an exact match for reality. For example, try driving your robot through a
wall.

Try driving the robot around using 'mrc-teleop' and notice how the laser data changes, and
how it differs from the actual virtual world.

Stopping the simulator and visualization
You can stop the simulator and visualization by pressing (ctrl + C) in the terminal. (ctrl + C )
is how you stop most processes in a terminal, also your own code.

Loading a custom heightmap

By default, the simulator loads an indoor environment. Fortunately, you can change the
simulation environment very easily! You just have to create a heightmap: an image that
specifies for each pixel how 'high' the world has to be at that point. Since the laser only
scans at one height, we can use two extremes here: flat (ground level) or high enough to be
detected by the laser.

To create an image, simply open your favourite image editor and create a black-and-white
image. If you don't know how to create an image, have a look at the section below. White
corresponds to the floor, black to the walls (i.e., which will be detected by the laser). You
have to keep the following things in mind:

The robot always starts in the center of the image. So, if you want to robot to start at the
edge of your maze / corridor, just create a bigger image and move the black pixels to the
upper part of the image.
You'll get the best result if the lines drawn are at least 2 pixels wide
Store your image lossless, i.e. using the png format (which is recommended by the way!),
instead of the jpg format.

We will also need to create a file with meta information. An example is shown below

mrc-teleop



Here we specify how the computer should interpret our heightmap. This is a .yaml file with
the following fields.

Once you have created an image, simply run the simulator and provide the yaml file as
argument:

That's it!

Create a heightmap image
There are many linux applications that you use to create images. We suggest using Gimp,
an open-source alternative to Photoshop. Although it might be a bit overkill to use for our
application, it has great support and the thing we want to do (draw black lines on a white
background) isn't hard. To install Gimp, run:

And run it using:

Then to create a simple image:

image: <YOUR_IMAGE_FILE>.png
resolution: 0.025
origin: [0.0, 0.0, -1.570796]
occupied_thresh: 0.9
free_thresh: 0.1
negate: 0

image : Path to the image file containing the occupancy data; can be absolute, or
relative to the location of the YAML file
resolution : Resolution of the map, meters / pixel
origin : The 2-D pose of the lower-left pixel in the map, as (x, y, yaw), with yaw as
counterclockwise rotation (yaw=0 means no rotation). This parameter only affects
visualization.
occupied_thresh, free_thresh, negate: these parameters are currently unused by the
simulator but they are part of the standard map metadata.

mrc-sim --map ./relative/path/to/<YOUR_METADATA_FILE>.yaml

sudo apt-get install gimp

gimp

Select File -> New (or ctrl-N)



Now, if you click left on the image, a dot is drawn, but we want lines! To draw a line:

There is two types of saving in Gimp. The first one is the using File -> Save. However, this
will only generate an xcf-file, something that can only be read by Gimp. Instead, you should
use the File -> Export option:

That's it! Don't forget to make a yaml file for your map.

Adding clutter objects and simulating wheelslip

In the real world, the odometry that is returned by the robot is not perfect and will have a
certain amount of drift. Furthermore, the internal representation of the map never matches
100% with the real world. To add these discrepancies to the simulator (which are disabled by
default), a JSON config file can be supplied. In this file it is easy to specify an array of
objects that will be added to the world and to enable wheelslip. An example of this file is
shown below:

Specify the size of your image. Remember, 40 pixels = 1 meter, and the robot starts in
the center
Select the Pencil Tool. (left click on the paintbrush tool, or press 'N' on your keyboard)
Set the pencil size in the lower left pane to something sensible, e.g. 2 pixels

left click, then hold shift, then left click again.
While holding the shift button, you can click more times to create a sequence of lines
To create nice, axis-aligned lines, also hold ctrl

File -> Export
Provide a name for your file. If you put '.png' as extension, it will be saved as png
Use the default png export settings

{
  "uncertain_odom":true,
  "objects":[
    {
      "length": 1.0,
      "width": 1.0,
      "trigger_radius": 1.0,
      "repeat": false,
      "velocity": 0.6,
      "init_pose": [-1.0, 0.0, 0.0],
      "final_pose": [-1.0, -2.0, 0.0]
    },
    {
      "length": 0.2,
      "width": 0.4,
      "trigger_radius": 1.0,



In this file, the "uncertain_odom" is enabled. Furthermore, two objects are added, which will
start to move from their "init_pose" to (approximately) their "final_pose", supplied in
(x,y,theta) coordinates. This movement is triggered when the robot comes within the
"trigger_radius" of the object, and the second object will keep repeating its movement. To
supply such a file to the simulator, use the following argument:

or

The wheelslip is simulated by random sampling a slip factor every few seconds, making the
simulator stochastic. The result is that, just like with the real robot, no two trials will result in
exactly the same robot position and odometry.

Adding doors

The real environment might contain a door that the robot needs to open. The simulator is
capable of simulating these doors, such that you can test your software before it gets real!
To add doors to the simulated world, simply edit your heightmap and add grey lines to it. To
be specific:

The doors should be visible as green blocks in the simulator. Now, you can use the emc::IO
object from your code to open these doors (but only if you are standing in front). You will

      "repeat": true,
      "velocity": 1.3,
      "init_pose": [1.4, 0.0, 0.0],
      "final_pose": [1.4, 1.0, 0.0]
    }
  ]
}

mrc-sim --config ./relative/path/to/<YOUR_CONFIG_FILE>.json

mrc-sim --map ./relative/path/to/<YOUR_METADATA_FILE>.yaml --config 
./relative/path/to/<YOUR_CONFIG_FILE>.json

The door should be a straight line (but not necessarily axis-aligned), with a minimum
thickness of 2 pixels. To be more specific, all pixels in the door line should be
connected
The average RGB value should be between 25 and 230 (on a scale of 0-255). So for
example, the RGB value (100, 100, 100) is a door, while (20, 20, 20) is a wall (and
(255, 255, 255) is open space).
You can have multiple doors in your world. However, make sure that they are always
separated by at least one pixel, otherwise the simulator will interpret them as one big
door.



learn more about the emc::IO object later in these tutorials.

To manually open a door in the simulator open a terminal and type

Hello world
Setting up your project
Of course, we not only want to use software during this course, but we want to create some!
Let's start off with a simple example project. Go inside the ~/mrc directory, and create a new
folder with the name my_project:

Often, the code files are not put directly in the root of a folder, but in a directory called src.
This stands for "source", and is called this way because the files in there are the source of
the compilation process, and are converted into binaries (files that are no longer human-
readable, but are understandable for the machine). So, let's go. Remember that when using
cd (and many other commands in linux) you can use tab-completion to type quicker, i.e, try:

You will see that the terminal fills out the rest, because my_project is the only directory in the
current directory that starts with an m. Ok, create the src directory, and go inside:

Finally, let's do some programming! You should already be familiar with the C++ language,
so you know how to create a basic C++ program. Let us do it now. Open your favourite
editor to create a file called example.cpp (e.g. gedit example.cpp ) and put some code
inside:

// ... Make sure robot is in front of a possible door
io.sendRequestOpenDoor();

mrc-open-door

cd ~/mrc
mkdir my_project

cd m<<< now push the TAB key >>>

mkdir src
cd src

#include <iostream>

int main()
{



Once you have saved your C++ program it can be compiled from a terminal using:

This will create a file called example which you can run. To run the file use:

You computer should now greet the world.

Now, actually, our nice src is already not as clean as it should be. Check with ls . It should
contain only source files, not binaries! No worries, let's go one directory up:

In case you are wondering ..  means one directory up. Create a bin folder for our libraries:

And run compilation as follows:

Now our binary is create in the bin directory, while the source is in src: nicely seperated! You
can run the program using:

By the way, just remove the example binary we created 'wrongly' in the src directory using:

And we are good to go.

Using the EMC framework

So, we've got a C++ source file that we can compile, but it is still not very useful. We have to
build software that runs on a robot and can perform a complex task. Starting from scratch
would take a lot of time, but fortunately a lot is already provided! Actually it was already

    std::cout << "Hello world!" << std::endl;
    return 0;
}

g++ -o example example.cpp

./example

cd ..

mkdir bin

g++ -o bin/example src/example.cpp

bin/example

rm src/example



secretly sitting on your computer, being installed by the install script. This software that is
provided is not something that is runnable on its own, but a set of functions and C++ classes
that we can use in our own project. Such a set of reusable software parts is called a
software library. Now, we have to include this installed library in the project.

Open the example.cpp file, and change it to the following:

The include statement on top includes the emc framework in your source file, which means
that all functions, classes, etc declared there can be used by your project. The io object is
something we will use to build our application with. Don't worry about it now, we'll get back to
that later.

Try to compile the project (make sure to 'be' in your project root, i.e.: ~/emc/my_project):

Woah, errors! Note that the error states something about undefined reference. We included
emc/engine.h so we should be fine right? No: often *.h-files only declare functions etc, but
they do not define them, that is: they tell the compiler something with that name is out there,
but they do not provide the actual implementation. We need to tell the compiler where the
implementation, which is already compiled into binary form, is. This is called linking, and we
need to specify it in the g++ command:

Here, the -l specifies that g++ should link the program to the library that is called emc-
framework. For those who are wondering, the compiler does not grab emc-framework out of
thin air. Take a look in the /usr/lib directory: you will find libemc-framework.so sitting there,
along with many other libraries. The extension so stands for shared object: it is a piece of

#include <emc/io.h>
#include <unistd.h>
 
int main()
{
   emc::IO io; 
   while( io.ok() )
   {
      sleep(1);
      io.speak("test " );
   }
      
   return 0;
}

g++ -o bin/example src/example.cpp

g++ -o bin/example src/example.cpp -lemc-framework



software that can be shared across different applications. The h-files, which are called
header files can be found in /usr/include (e.g., look for /usr/include/emc/io.h).

To run this example, you will first need to start a ROS master. We can do this by launching
the simulator.

CMake

So, we compiled a source file into a binary in another directory, while linking against the
emc-framework library. Imagine that by the end of the course you will use more libraries, and
every time you need to remember the g++ command. That's quite a nuisance! Fortunately,
there are tools that will help you out. In this course, we will use CMake.

Enough talking, let's start using CMake to build our project, such that compilation becomes
easier. All you have to do is create a file in the root (~/mrc/my_project) of you project that
can be read by CMake, called CMakeLists.txt. In it, you specify the instructions that are
needed to compile the project. Create a file called CMakeLists.txt (e.g. gedit CMakeLists.txt)
with this text:

This file is probably quite understandable at first sight: it specifies the minimum required
version of CMake to read the file, the name of your project, and states that an executable
called example should be created from the source file src/example.cpp.

History of CMake  

A very short history: when Linux programmers started to become annoyed with typing
the g++ (or rather gcc back in those days, the compiler for plain C), they invented
Make, a "tool which controls the generation of executables and other non-source files
of a program from the program's source files". Make allows you to specify compiler
options, linking, etc of your project in a file, and once that was done, you only had to
run make to compile your project. However, other Operating Systems created their own
build systems (that is what these tools are called), e.g., Microsoft uses Visual Studio for
Windows. Then some people came up with CMake which is a cross-platform (that is
what the C stand for) build tool: it can be used on Linux, Mac OS and Windows. In fact,
it builds on top of the OS-specific build tool. For example, on Linux, CMake generates
Make-files, while on Windows it generates files that can be used by Visual Studio.
That's quite useful! It allows programmers from all over the world to collaborate on
software projects, even if they are using different Operating Systems!

cmake_minimum_required(VERSION 2.8)
project(my_project)

add_executable(example src/example.cpp)

https://en.wikipedia.org/wiki/CMake
https://en.wikipedia.org/wiki/Make_(software)


Now, how should we use this thing? As was already said, CMake does not directly call the
compiler. Instead, it generates Makefiles which can be used by the Linux-dependent Make
tool. These Makefiles, or more generically called build files, are created in a seperate folder,
often called build. Go to the root of your project (cd ~/mrc/my_project), create a build
directory and go inside:

Now, to generate the build files, we only have to call CMake and refer to the directory in
which the CMakeLists file is we just created:

(remember .. stands for 'one directory up')

Have a look inside the build directory: CMake generated a lot of files, one of which is a
Makefile. Now while 'being' in the build directory, call Make:

You will see that the compiler is called (as if we started g++ ourselves). Oh whoops... Again
the undefined reference error. But this makes sense: we did not specify yet that we need to
use the emc-framework library. Doing so in CMake is easy. Edit the CMakeLists.txt file, and
add below the add_executable statement:

Now run cmake and make again:

Success! However, the binary is also created in the directory where you called make, i.e. in
the build directory. It would be nice to have it in the bin directory we created earlier. Well, we
can. Just add the following line to your CMakeList.txt:

This sets the CMake variable EXECUTABLE_OUTPUT_PATH to be the bin directory in your
project directory. The ${...} simply returns the value of the variable inside. The CMake
variable PROJECT_SOURCE_DIR is set by CMake and refers to the directory in which your

mkdir build
cd build

cmake ..

make

target_link_libraries(example emc-framework)

cd build
cmake ..
make

set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)



CMakeLists.txt is placed (the name is somewhat confusing...). Try to run cmake ..  and
make  again. You should see the executable appear in your bin directory.

By the way, you only need to run the cmake command if you change your CMakeLists.txt.
Once you start programming, i.e, editing your source files, you can simply go to the build
directory and run make.

Towards an autonomous robot
So far, we have seen how to create a simple C++ project, run the simulator, show some
visualizations and drive the simulated robot around using the keyboard. That's nice and all,
but we don't want to manually drive around a virtual robot. We want an autonomous, real
robot!

As was already stated during the lecture, we won't expose you to the (sometimes somewhat
frustrating) low-level details of connecting software to hardware. Instead, we provide you
with an abstraction layer that can be easily used within your program to read sensor data
and send goals to the base. Under the hood this layer communicates using ROS, but unless
things go horribly wrong you won't have to worry about that.

The loop
When we want to control and monitor a piece of hardware, we often want to perform a series
of steps, computations, procedures, etc., in a repetitive manner. When we talk about doing
something repeatedly in software, the first 'control flow statement' that comes to mind is a
loop. So, lets' create a loop!

A note on CMake  

You might be thinking: this still is a lot of hassle. The g++ command wasn't that bad,
and now I need an extra directory, some extra commands, understand CMake, etc.
Indeed, for the small example above CMake is a bit overkill. However, once your
project grows and source files are added, more libraries are used, etc, you will see that
it is quite handy to have your project set-up defined in one simple file. Furthermore, you
won't have to tell your teammates what command to run if you add a file or library, as
you can simply update the CMakeLists.txt. Also, CMake is a widely used language, and
supported by many Integrated Development Environments (IDE), which can be thought
of as really smart programming editors that not only provide editing, but also support
compiling and even runnning and debugging your program. Having a CMakeLists.txt is
having a project definition that can be used by many IDEs to 'understand' what is going
on in your project.

#include <iostream>



Remember that while the condition in the while statement is true, the body of the while loop
will be executed. In this case, that is forever! Fortunately you can always interrupt the
program using ctrl-C from the command line. By the way, the default behavior is that this
directly kills your program, so all statements after the while loop (if there were any) would
never be executed. You can verify this by putting a print statement there. You will see it is
never called...

So, it's a nice loop, but there's at least three things wrong with it:

For now, let's focus on point 2). Your operating system schedules the execution of programs:
if multiple programs are running simultaneously, it gives each program a short period of time
to perform their executions and then jumps to the next. What our program does in that time
slice is printing 'Hello World!' as fast as it can! It is like a horrible, zappy kid taking up all of
your time as soon as you give it some attention. We can be better than that.

Let's wait a little

In fact, you can tell the operating system that you're done for some time. This allows it to
schedule other tasks, or just sit idle until you or another program wants to do something
again. This is called sleeping. It's like setting an alarm clock: you tell the operating system:
wake me up in this-and-this much time.

So, let's add a sleep statement:

int main()
{
    while(true)
    {
        std::cout << "Hello World!" << std::endl;
    }

    return 0;
}

1. It runs forever, never 'gracefully' shutting down (only by user interruption)
2. It runs as fast as possible!
3. It doesn't do much useful except for flooding the screen...

#include <iostream>
#include <unistd.h> // needed for usleep

int main()
{
    while(true)
    {
        std::cout << "Hello World!" << std::endl;
        usleep(1000000); // sleep period of time (specified in microseconds)



Ahhh, that's much better! Now approximately every second a statement is printed. This will
use way less CPU power that the previous implementation. Note that we explicitly stated
'approximately'. The loop runs at approximately 1 Hz because:

Although you shouldn't worry about the second point, it is important to take the first into
account. As you will put more and more code into the body of your application, it will take
more and more time to process it. Sleeping for a fixed amount of time causes your system to
start lagging behind at some point.

Fortunately, we created something for you: a class that can be used to keep track of the time
spent since the last sleep statement, and which will only sleep the remaining loop time. Use
it like this:

Control the robot
Now finally, let's connect to the robot (even though it is a simulated one...)! As was already
stated, we can use two types of inputs from the robot:

    }

    return 0;
}

1. The other statements in the loop also take time (in this case the printing).
2. The operating system can not guarantee that it will wake you up in exactly the time

specified. This has to do with program priorities, schedules, etc. In high-performance
mechatronics system, it is often needed that this frequency can be specified as 'hard' or
'strict' as possible. Therefore these machines often run real-time operating systems that
will guarantee that, or at least to some extent. Don't worry about it, you won't notice
Ubuntu is not hard real-time.

#include <iostream>
#include <emc/rate.h>

int main()
{
    emc::Rate r(3); // set the frequency here

    while(true)
    {
        std::cout << "Hello World!" << std::endl;
        r.sleep(); // sleep for the remaining time
    }

    return 0;
}



And, in fact, we only have to provide one output:

That's it! All we have to do is create a mapping from these inputs to this output! We provide
an easy to use IO object (IO stands for input/output) that can be used to access the robot's
laser data and odometry, and send commands to the base. Let's take a look at an example:

First, try to understand what is going on. You should already be able to derive what will
happen if this program is executed.

Now, note a few things: The IO connection is created by just constructing an emc::IO object,
it's that easy! We will loop as long as the connection is OK. Then, we can send a command
to the base by simply calling a function on the io object. We do this at a fixed frequency of 10
Hz.

Now, fire up the simulator and visualization, and run the example. And what do you see?
Voila, we move the robot using our application! Try modifying the sendBaseReference
arguments, and see how they affect the robot behavior.

The laser data from the laser range finder
The odometry data from the wheels

Base velocity command

#include <emc/io.h>
#include <emc/rate.h>

int main()
{
    // Create IO object, which will initialize the io layer
    emc::IO io;

    // Create Rate object, which will help keeping the loop at a fixed frequency
    emc::Rate r(10);

    // Loop while we are properly connected
    while(io.ok())
    {
        // Send a reference to the base controller (vx, vy, vtheta)
        io.sendBaseReference(0.1, 0, 0);

        // Sleep remaining time
        r.sleep();
    }

    return 0;
}



Making the robot aware

So, the robot moves, but it's still pretty stupid. The simulator doesn't have collision detection,
so once the robot is near a wall it just goes through it. We don't want that to happen to the
real robot, because it will crash! Let's see if we can do something smart. Maybe using the
laser?

The io object can not only be used to send commands, but also to read data from the
sensors (more detailed information about the different sensor data, i.e., the laser data,
odometry data, is given in the next tutorial step). Here, we will treat a reading of the laser
data, which can be done as follows:

First, you have to create an object / variable that will hold the laser data. Then you call
readLaserData with this object, and two things may happen: either new laser data was
received and the function returns true. We can then directly start processing it. Or, the
function returned false, which means there is no new data.

The emc::LaserData type is in fact a struct that holds all kind of data. Inside you will find
information about the maximum range the sensor can measure, the minimum and maximum
angle, and of course, the measured distances, or ranges themselves. Try putting the snippet
above in the loop you created earlier. Add code that will be executed if new laser data is
received, and which prints the minimum angle of the received data:

See, you can use the period ('.') to access members of the scan object. This is very similar to
accessing the functions sendBaseVelocity and readLaserData of the io object. Now if you
run the example, and your simulator is running, you will see a value being printed. This
represents the minimum scanning angle of the Laser Range Finder. It doesn't change, and
that makes sense: the minimum angle doesn't change because it is a fixed value.

Now let's try accessing a more interesting member of the scan object. The ranges member
is not simply a single value but an array of values, or rather, an std::vector . These values

...
emc::LaserData scan;
if (io.readLaserData(scan))
{
    // We got new data, so do something with it
}
...

...
#include <iostream> // Add this line under the other includes
...
std::cout << scan.angle_min << std::endl; // Add this line in the loop
...



represent the measured distances at different angles. The scan object specifies a minimum
angle and the angle_increment per array index, which means that you can calculate for each
range index to which angle it belongs. Accessing a range value can be done using [  and ] ,
e.g.:

prints the first distance in the ranges vector (i.e., the range belonging to the minimum angle).
Note that all distances are in meters. Now, finally, we can make the robot a bit smarter. We
can use it to loop over the values in the range vector:

Alright!! Now you have all the ingredients to create an application that drives HERO forward,
but stops if an obstacle is near!! We can create a main loop at a fixed frequency, send base
commands, read the laser data and do something sensible with it. Just know that you can
stop the base by simply calling sendBaseReference(0, 0, 0) .

Obtaining laser, odometry and bumper data
This page provides a short description of the laser data, odometry data, and bumper data
that can be obtained through the IO object introduced earlier.

Laser Data
To obtain the laser data, do the following:

The LaserData struct is defined as follows:

...
std::cout << scan.ranges[0] << std::endl;
...

...
for(unsigned int i = 0; i < scan.ranges.size(); ++i)
{
    if (scan.ranges[i] < some_value)
    {

    }
}
...

emc::LaserData scan;
if (io.readLaserData(scan))
{
    // ... We got the laser data, now do something useful with it!
}



The range_min and range_max values define what the smallest and largest measurable
distances are. If a distance reading is below range_min or above range_max, that reading is
invalid. The values angle_min and angle_max determine the angle of the first and last beam
in the measurement. The value angle_increment is the angle difference between two beams.
Note that it is actually superfluous, as it can be derived from angle_min, angle_max and the
number of beams.

The actual sensor readings are stored in ranges. It is an std::vector, a vector of values
which, in this case, stores floats. Each vector element corresponds to one measured
distance in meters at a particular angle. That angle can be calculated from angle_min,
angle_increment and the index of the element in the vector.

Finally, the timestamp specifies at which point in time the data was measured. The
timestamp is in Unix time, i.e., the number of seconds since 1 January 1970. Note that the
absolute value is not necessarily important, but that the timestamp can be handy to keep
track of laser data over time, or to synchronize it with other input data (e.g., the odometry
data).

Odometry Data

The robot has a holonomic wheel base which consists of two wheels in a diff drive
configuration and a rotational joint which rotates the entire body. The specific configuration of
the wheels allows the robot to move both forwards and sideways, and enables it to rotate
around its axis. Both wheels and the joint have an encoder which keeps track of the
rotations of that wheel. By using all three encoders and knowing the wheel configuration, the
displacement and rotation of the robot can be calculated. In other words: we can calculate
how far the robot drove and how far it rotated since it's initial position. This translation and
rotation based on the wheel encoders is called odometry. However, note that this information
is highly sensitive to drift: small errors caused by measurement errors and wheel slip are
accumulated over time. Therefore, relying on odometry data alone over longer periods of

struct LaserData
{
    double range_min;
    double range_max;
    
    double angle_min;
    double angle_max;
    double angle_increment;

    std::vector<float> ranges;

    double timestamp;
};



time is not recommended! Also note that the odometry data does not start at coordinates
(0,0).

To obtain the odometry information, do the following:

The OdometryData struct is defined as follows:

Here x, y and a define the displacement and rotation of the robot since the previous
measurment, according to the wheel rotations. The translation (x, y) is in meters. The
rotation, a is in radians between -pi and pi. Like the laser data, the odometry data also
contains a timestamp which is in seconds (Unix time).

Lazy Boolean Evaluation

The functions shown above are boolean functions, i.e., they return True or False to indicate
whether a new measurement of the sensor is available. If you want something to happen
when either laser or odometer data is found you may be tempted to use something like:

However C++ uses lazy boolean evaluation. Meaning it won't evaluate the second argument
in an OR statement if the first is already True. Similarly it won't evaluate the second
argument in an AND statement if the first is False. In this example the laser data will be read
but the odom struct remains empty! Consider instead this approach:

emc::OdometryData odom;
if (io.readOdometryData(odom))
{
    // ... We got the odom data, now do something useful with it!
}

struct OdometryData
{
    double x;
    double y;
    double a;
    double timestamp;
};

emc::LaserData scan;
emc::OdometryData odom;
if (io.readLaserData(scan) || io.readOdometryData(odom))
{
    // ... We got sensor data, now do something useful with it!
}



Exercise 1: the art of not crashing

Sharing your project through git
Creating a software solution together means sharing a project, which in our case means
sharing code. We will be using git for this. Git is "a free and open source distributed version
control system designed to handle everything from small to very large projects with speed
and efficiency":

emc::LaserData scan;
emc::OdometryData odom;
bool new_laser_data = io.readLaserData(scan);
bool new_odom_data = io.readOdometryData(odom);
if (new_laser_data || new_odom_data)
{
    // ... We got sensor data, now do something useful with it!
}

Don't crash  

Wow finally an actual exercise! We saw how we can control the robot and how we can
read the laser data. Now lets make the robot do something.

1. Create a folder called exercise1 in the mrc folder. Create an src folder within the
exercise1 folder. Within this folder make a new file called dont_crash.cpp .

2. Add a CMakeLists.txt to the exercise1 folder and set it up to compile the
executable dont_crash .

3. Q 1 Think of a method to make the robot drive forward but stop before it hits
something. Document your designed method on the wiki.

4. write code to implement your designed method. Test your code in the simulator.
Use the Once you are happy with the result, make sure to keep these files as
we will need them later.

5. Make a screen capture of your experiment in simulation and upload it to your
wiki page.

Multiple choice  

Your group will have found and implemented multiple methods of making a non-
crashing robot. Describe them all on your wiki. Do credit the team members that
worked on each one.
On your wiki. Compare the different methods to one another. What situations do
these methods handle well? Is there one "Best" method?



Clone a project
The examples you worked on up until now are stored on your own computer, which is fine if
you are the only person working on your project. However when working with a team you
need every member to have access to the most recent version of the code base. Well,
sharing is easy in git! Your teammates can get a local copy of the repository. This is called
'cloning', and works as follows.

The MRC team has already initialized a git repository for you which includes a small
example. To share the repository with your group we will use GitLab. GitLab is open source
software to collaborate on code. The TU/e has its own gitlab server which we will make use
of. Now:

Before you can clone the repository we will have to tell gitlab it can trust your computer. For
this we use a process called ssh. In a terminal type

Don't enter anything when given prompts. Simply press enter two or three times. We don't
really need a passphrase for this ssh key and we can use the default location. After doing
this type

This will print your public ssh key to the terminal. Next, on gitlab select edit profile on your
own profile. In the tab SSH Keys select Add new key . In the key field copy paste your public

version control means that the files and changes you make to them are 'tracked' over
time, i.e., their 'history' is stored. You can always go back to previous versions, show
the differences between a certain point in time and now, and much more.
distributed means that you don't necessarily need a central server to store your
changes. Every team member has the full history available, and can always save his or
her changes or go back to previous versions, even if he or she is offline. However, note
that it is possible to use a central server that every team member writes his or her
changes to, and receives the changes others made from. In this project, we will be
using such a central server.

Browse to gitlab.tue.nl and click the TU/e login button
Take the steps you usually take to login to your TU/e account
E-mail your username (that starts with @) to Peter van Dooren (only one group
member has to send their username)
Once we have added you to your group's project, you will receive an e-mail with the link
to your repository
You can then add your colleagues to your project and start collaborating!

ssh-keygen

cat ~/.ssh/id_rsa.pub



ssh key. (remember that in a terminal copy is done via ctrl+shift+C). Give your key a
descriptive name such as "MRC-virtual-ubuntu" and add the key.

Once you added your ssh key to your account you can clone your groups repository using
the following command (fill in the your group name for <GROUP_NAME>, or copy the whole
link from the GitLab page of your group):

This will create a directory called 'shared_project' in which you will find the files that
someone else made. Now, this is your local copy of the repository to which you can make
changes. We will learn here how we can save those changes and safely store these
changes to the central server.

In git terminology, we commit changes to our local repository and then push these changes
to the remote. So, let's do this!

Telling git who you are
Before you start using git, you have to tell git who you are. That way, git can 'stamp' all the
changes you make with your name and email address. That way it is easy to keep track of
who did what, and when. Just run the following (with your real name and email address):

Making changes in a git repository

Navigate to your project directory, which is most likely the directory you just created while
cloning the repository. For this tutorial, we will use '~/mrc/shared_project', but you will use
the actual name of your project.

SSH keys  

SSH is communication protocol. The keys we use are a way for computers to verify
eachothers identity. When you communicate with gitlab on your virtualbox the computer
will automatically authenticate itself with this key. Think of it like a password for
computers.

cd ~/mrc 
git clone https://gitlab.tue.nl/mobile-robot-control/2024/<GROUP_NAME>.git 
shared_project

git config --global user.name "Put your name here"

git config --global user.email "Put your email address here"

cd ~/mrc/shared_project



Lets add the files of our previous exercise to this folder. Copy the folder exercise1 to your
shared folder.

Lets also make some changes to the README.md. Add your name to the list of group
members. Open a file editor with

After opening the file, make your changes and hit save.

If you want to check what changes you have made since your last commit use

You will see a list of modifications and untracked files, e.g., something like this:

Modified means that the file has been changed since the last commit. Untracked means that
these files and folders are not under git version control. If you do not remember what you
changed since the last commit you can inspect it with

This will show you the changes you made to README.md. If you leave out the argument git
diff will show you the changes in every file in the repository.

cp -r ~mrc/exercise1 ~mrc/shared_project/exercise1

gedit README.md

git status

Changes not staged for commit:
    (use "git add <file>..." to update what will be committed)
    (use "git restore <file>..." to discard changes in working directory)
    
        modified:   README.md

Untracked files:
    (use "git add <file>..." to include in what will be committed)

exercise1

git diff README.md

gitignore  

Note that we only want some of the files to be tracked by git. For example, the bin and
build folder are automatically generated by CMake and compilation. It is not necessary
to share these files with your team members. We should therefore only add the source
files, and the CMakeLists.txt (and possibly other files that you want to share). Since we

https://git-scm.com/docs/gitignore


We should tell git which files we want to keep. To make sure git will keep track of files, use
git add:

Now, run git status again. You should see something like this:

As you can see, you now have some 'changes to be committed'. Committing means we
store the added files as they are now. From that point on we can make new modifications,
and we can always roll back to this version, see the changes since this version, and, we can
share the changes with others. To commit the changes:

The part after '-m' is the commit message. It is important that this message is a meaningful
message that describes what the added changes are, for example 'fixed this-and-this bug' or
'added this-and-this feature'. That way, you can look in the 'git log' and easily see what was
added when, and to which version you need to roll back if you have to.

So, we have commited our changes. Let's see the status using git status. It no longer
indicates changes to README.md. That is correct, we just committed them! Now, have a
look at the git log:

It outputs an overview of who committed what and when. You should see your name and
commit message, and some long code with letters and numbers. This is a commit hash, and
can be thought of as a unique id for this commit.

know that we will never want to commit the build and bin folders we have specified
these folders in a process called gitignore

git add README.md

Changes to be committed:
  (use "git rm --cached <file>..." to unstage)

modified:   README.md

Untracked files:
  (use "git add <file>..." to include in what will be committed)

exercise1

git commit -m 'Type a meaningful sentence here'

git log

add your work  

https://git-scm.com/docs/gitignore


Storing your changes on the server

Alright, your work is now safely stored on your computer. You can make changes, and
commit these as well (remember, first use 'git add', then 'git commit'). But you also want to
share these changes with your team mates!

Since we have cloned the repository from gitlab, git will assume that this is also where it
should send the commits to (and where it can pull them from later). But we still have to tell
git to actually send them there. This is called 'pushing'. To do this you have to use this
command:

and enter your username and password.

Optional: A nice alternative to typing your username and password every time is to configure
a SSH key for git and gitlab. A nice tutorial to accomplish this can be found here, follow the
tutorial from How to generate an RSA SSH key pair onward.

We won't go into details here, but the push command basically states that the current
commits should be send to the origin (on Gitlab) and that the git repository should 'keep an
eye' on what happens on the server. This means that if one of your team mates also pushes
commits to this address, we can 'pull' them to your local repository. This is exactly how the
synchronization works. You push your changes, and pull changes that others made.

Retrieving changes from the server
Up until now, you have seen how you can commit your changes to the server. One thing is
not yet explained, and that is how you can get the changes that others pushed to the server
since you cloned it. Well, it's easy:

This will 'pull in' the latest commits and your files will be updated accordingly. Note that this
won't work if you have modified files, i.e., file changes that you have not yet committed. You
don't want these changes to be overwritten by a 'pull', so git doesn't allow it. To get the latest
changes, you have to commit your changes and try pulling again.

Git GUI

Now add the files from exercise1 and commit the changes using these same steps. You
should commit multiple files at once if their changes are related.

git push

git pull

https://spectralops.io/blog/guide-to-ssh-keys-in-gitlab/


If you have completed the tutorial up to this point, you have learned how to use the basic
functionality of git in the command line. However, while many people are satisfied with using
git in the command line, plenty of graphical user interfaces (GUI) for git are available for free.
These GUI generally offer the same (basic-)functionality as the command line you have
seen earlier. However, do not require you to type and remember the syntax of every
command. An important remark is, of course, that finding the right button that corresponds to
the command you want to execute can be as difficult as remembering that command in the
first place.

A popular git GUI is SmartGit. To install and try SmartGit, run:

Then to use SmartGit, hit the windows key on your computer, type smartgit, and launch the
program. In the setup windows that will launch select Non-Commercial (Academic) use, and
follow further instructions. In the window "Welcome to SmartGit" select the repository you
want to use, or clone a repository by providing SmartGit with a link to your repository.

After setup, SmarGit will show a graph of all past commits, shows a window to make a new
commit, and will show you a window with changed files. If you're planning to use SmartGit in
this course, experiment a bit, try to find out if you can use SmartGit to do all the steps you
have done in the first part of this tutorial.

Recap

The tutorial above showed how to clone a repository in GitLab, how to push changes to it,
and how to pull changes from it. From now on, keep working in this directory and commit all
your changes, and pull the changes from your team members. After working through the
tutorial above, you can also use the GIT Cheatsheet in case you need a refresh: click on e.g.
workspace to see all related commands.

Again, you can commit the change once you've done something useful, but first you need to
tell git again which files you want to commit by using 'git add'. Then once you've created the
commit, you can push it to the server, this time simply using 'git push'. So, to sum up:

wget https://www.syntevo.com/downloads/smartgit/smartgit-21_1_0.deb
sudo apt install ./smartgit-21_1_0.deb

Pull the changes your teammates made:

git pull

Make your changes
Add the files of which you want to commit the changes:

http://www.ndpsoftware.com/git-cheatsheet.html#loc=workspace;


Exercise 2: Testing your don't crash

Setting up an IDE
To keep the code in your packages clear and manageable, it is advised to use an Integrated
Development Environment (IDE) to edit your C++ code. VScode is such an IDE. It has the
advantage of understanding your code up to some extent. This means VScode can be used
to, e.g., auto-complete names of variables and functions, get compilation error messages,
and can even allow you to debug your code in a nice way. Also, as was stated in the
previous tutorial, it can be made to understand CMake, which allows it do be used to
compile your project, and even run the resulting executables.

Install and Configure VScode

To make the use of VScode more comfortable for you we've created a script, which if you
run it not only installs VScode, but also installs a few of its many extensions. These
extensions extend the functionality of VScode. There are extensions to make it understand
CMake, Git and C++.

To install VScode:

git add .\path\to\file

Commit your changes:

git commit -m '... message ...'

Push your changes to the server:

git push

Todo  

In the repository that you just cloned you will find a folder called test. This contains 2
maps for the simulator. Test your dont crash solution with these two maps. report your
findings on the wiki

wget -O install.bash 
https://raw.githubusercontent.com/KdVos/MRC_vscode_install/main/vscode_install.ba
sh
source ./install.bash 



Setting up VScode for your project

Now you have installed a proper IDE, you can start to do some real programming! In
previous tutorials, we created a C++ project called my_project and went through a little bit of
work to get it to build using CMake. Now, that work will pay off: VScode 'understands'
CMake, so we can directly load the project.

In a terminal go to your project. Within the root directory type the following:
(the root directory is the directory containing CMakeLists.txt)

This will open vscode in the Current directory. It will ask you whether you trust the authors of
this directory, since we are the authors we will trust ourselves. Afterwards, when you are
prompted to "select a kit" select the [unspecified] option. In the sidebar the current directory
and the files contained in it are shown. Click on your CMakeLists.txt to open this file.

One of the most powerfull features of vscode is the command palette. Almost all functionality
of your IDE and its extensions are available through this window. To open it type:
ctrl+shift+p . (sometimes this doesn't work directly, you can try restarting vscode in this
case)

To tell vscode that you like to use your cmake file, open the command palette and type
Cmake: Configure:  and hit enter. VScode will now remember that you are using CMake to
build your program.

If we now open our .cpp file, we can try to compile our program within vscode. Again open
up your command palette, but this time type Cmake: Build . In the terminal in the lower part
of your screen you will see that our project is succesfully built.

To run your program type Cmake: Run without debugging  and our program will execute.

Since typing our commands in the command palette can get boring after some time, key
bindings were created to make our lives easier. If we again open the command palette and
type Cmake:Build  we see that we could have also used the F7 key to build our project. If we
close the command palette again and use the F7 key we see that this is indeed the case.

Using VScode
From this point on you don't really have to leave VScode any more. You can edit the source
file in VScode, edit the CMakeLists.txt, run CMake and even run your program. That's pretty
awesome!

But you ain't seen nothing yet. Double click on example.cpp to edit it. Remove the #include
statement at the top, and type it again, but slowly. You will see that as soon as you start
typing #include , VScode pops up a window with some suggestions. The more you type, the

code . 



more specific it becomes. You can select an option using the arrow keys, and press enter or
tab to confirm. This is called auto-completion and will save you a lot of typing. Continue
typing. When you get to <em, you will see that VScode even understands the location of
header files, and auto-completes them for you.

Now lets make a mistake on purpose: misspell return and use F7 to compile the project. You
will see a list of issues pop up on the bottom. You can double click on issues to directly jump
to the error, which is especially useful if your project gets bigger.

Debugging your project

As you might know, the life of a programmer and software developer sometimes largerly
consists of debugging our own code. Ofcourse, VScode gives you the tools to do this.

You can add a breakpoint to your file by clicking the space before a line number.

You can run your program till an error occurs. Or you can pause execution during a run.

First, make sure you have built your project in debug mode using "Cmake: Select Variant".
Afterwards, you can start debugging by typing "CMake: Debug" in your command palette.

Note, however, that your code performs better when you change your build variant back to
Release mode.

Making your life easier
So far we've only used the file explorer sidebar. But if you look closely at the left side of your
vscode window you'll discover a range of other functionalities. This tutorial will highlight a
few of them, but is definitley not exhaustive.

GIT

In a later tutorial we will teach you how to use GIT. A version control system which enables
easy collaboration on your code. VScode offers a built-in Graphical User Interface (GUI)
which is accessed through the sidebar. Just click the third icon, which looks like a
crossroads.

TODO-tree

Since software development can sometimes become a bit of a complex operation, in which a
large amount of things need to be implemented across multiple files and functions. We've
added an extension so you can easily keep track of your todos, bugs and thing to be fixed.
To access it just click the tree icon, it should be the second to last icon in your sidebar.

If we go back to our project files, and add a comment saying // #TODO: this needs to be
fixed ASAP , you will see an item pop up in your todo-tree. This way it is easier to keep track
of your todos, and you can make sure you don't forget about them.



Concluding Remarks

As said before, Vscode offers you a library of hunderds of extensions, not all are useful to
us, but some can improve your software developement experience significantly. This tutorial
is, therefore, all but exhaustive. There are probably functionalities and extensions we
missed, but experimenting a bit can probably lead to an even better experience.


