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Behavior Design: Context connections



4

Behavior Design: Implementation
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Behavior design
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Decision Maker Composition Pattern
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Decision Maker Composition Pattern

● 'Brains' of the robot

● Fixed updating frequency (30 Hz)

● Event-depended choices
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Behavior Design
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Scan Composition Pattern
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Scan Composition Pattern

● Interprets LRF data

● Low level → High level

● Implementation of potential fields

● Cornering with virtual walls

● Configurator for 'drive.cpp'

● Dependent on 'Decision Maker'
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Localization
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Localization

● Combining sensor data

● Returns global coordinates

● X

● Y

● Theta

● Dynamic switching of 'R'-matrix

● Odometry possibly unreliable

● LRF might loose track of a wall
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Behavior Design
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Mapping and Solving Composition Pattern
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Mapping and Solving Composition Pattern

● Tremaux's maze solving algorithm

● Mapping a mix of:

● Higher level: Graph

● Lower level:  Node position
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Summary

● Behavior design as backbone for entire project

● Behavior implementation as guideline for 

classes/separate *.CPP-files

● Separate 'brain' controlling all other functionalities

● Implementation of :

● Tremaux's maze-solving algorithm

● Kalman filtering for global coordinates

● Potential field method for basic driving



17

Stuff that we expected from EMC

• Frequency domain motion control in C++

• z-domain or s-domain

• State-space motion control in C++

• More low-level lectures, more elaborate examples
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Stuff that we've learned

• Top down software design using diagrams
• Composition patterns vs behavior diagrams

• Bottom up implementation
• Easier to get working code from scratch

• Difficulties in integration of the entire software package

• Valuable information from 'dirty fixes', but should be re-
written for the final product

• “Shoot first, ask questions later”-approach

• Coordinating team work with a group of 10 people
• Decoupling problems, mostly trial and error
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