
acqgen: Data acquisition and real time control with

MatLab

A.T. Hofkamp

release-v1-RC3

1 Introduction

Real-time controller design is often done in an environment like MatLab. Designs developed here
can be translated to C, giving a controller implemented in C that has sufficient performance.
However, to actually control some physical device, a bridge between the hardware sensors and
actuators, and the designed controller is required. Normally, this again has to be manually
implemented in the C language.

The acqgen program offers another path. It generates (and compiles) a MatLab-Mex func-
tion that converts input and output data-value streams from sensors and actuators to streams of
input and output MatLab matrices containing these values. Connection to the hardware sensors
and actuators can be expressed in MatLab, making the connection to a physical device much
simpler.

Since the acqgen program provides hardware sensors and actuators access at MatLab level,
this program can also be used for other uses where such access is required. A common example is
data acquisition, where input is sampled with or without controlling actuators. In this area, the
acqgen program provides features such as generating commonly used output signals, filtering
and triggering input signals, and pre-writing input streams.

MatLab and Mex are owned by Mathworks, EtherCAT is owned by Beckhoff.

2 Installing and usage

Installation is described in Section 6. Using acqgen to conqueror the real-time world only takes
five simple steps.

1. Define desired functionality of the acqgen generated module in a configuration text file
(see examples in Section 3 and the reference documentation in Section 4).

2. Generate and compile the Mex -C source file using acqgen.

3. Use the module in your MatLab data acquisition or control program. Section 5 explains
the details of using it.

4. ???

5. Profit!

1



3 Examples

Below are a few example configuration files. First a simple input/output configuration without
buffering by the generated module.

config(memsize = 32000,

nic = "eth5", # Modify to the ethernet device connected to EtherCaT

frequency = 1000, # hz

buffered = false

);

# Matlab gets samples from ain[0] and din[1].2, the first analogue input, and

# bit 2 (3rd bit) of the second digital input.

input(ain[0], din[1].2);

# Matab provides analogue control data to aout[0] and aout[1].

aout[0], aout[1] = output();

The config sets up the general configuration, providing memory for IO (and buffers, if running
in buffered mode). It also defines the ethernet port to use for connecting to EtherCAT , and the
frequency of sampling/controlling. The buffered = false means the generated module runs in
unbuffered mode, it does not do any buffering, output data is directly given to the EtherCAT
master, and input samples are directly returned.

The input and output blocks represent the generated module, it ‘takes’ analogue and digital
inputs, and ‘provides’ values for the analogue outputs.

In the unbuffered mode, the generated Mex module takes one input array consisting of one
column with real values for the outputs. The module returns two output values. The first value
is an error string (empty if no error happened), the second value is a real array with one column
containing the data values retrieved from the EtherCAT master.

The application that uses the generated module should call the module at the indicated
frequency. If the application calls the module earlier, it will wait until the right time has been
reached.

While the above is often sufficient with unbuffered input/output modules, the generator can
also handle functions, filters, and triggers here (as shown below).

The example in buffered mode is more elaborate. Here, actuators are not driven from the
application, they are controlled by the generated module. The sensor input is used to return
measurements around a particular point in the (periodic) input signal.

config(memsize = 32000,

nic = "eth5", # Modify to the ethernet device connected to EtherCaT

frequency = 1000, # Frequency in Hz

buffered = true,

default_input_buffersize = 100,

default_input_buffercount = 2,

default_prewrite = 0.2

);

# aout[0] provides 100Hz sine wave at sample frequency 1000Hz, between -4 and 4.

aout[0] = function(shape=sine, frequency=100, base=0.0, amplitude=4.0);

2



# Filter ain[0] by averaging the last 3 samples.

fout = filter(ain[0], weights=[0.33, 0.33, 0.33]);

# Trigger on upgoing flank of filter output, passing 1.3. Trigger output is

# high for 100 samples (= 100/1000 = 0.1 seconds).

tout = trigger(fout, policy=up, value=1.3, count=100);

# Save and return raw ain[0] when triggered by tout, with 20% prewriting.

input(ain[0], index = 1, enable=tout);

In buffered mode, a separate thread performs the data IO to the hardware. The generated
module takes a cell array as input, which should contain real matrices indexed by the index

parameters of the output blocks. (This example has none, so it should provide an empty cell
array.) The module returns two values, an error string as the first output, and a cell array with
matrices from the inputs, indexed on the value of the index parameter of the input blocks. In
each matrix, a row represents a device, in the same order as listed in the input block, each
column contains values from all sensors at a single point in time.

4 Specifying functionality

The configuration file uses two main concepts, signals and blocks. A block is a piece of function-
ality, a signal is a ‘wire’ to connect blocks to each other.

In addition, the program knows two modes of running, unbuffered mode and buffered mode.
A configuration is specific for one of these modes. In the unbuffered mode, there is nothing
between the controller and the hardware IO. The generated Mex module has one input and one
output block, it takes a matrix with one column of output for the actuators, and returns one
column of samples from the sensors (and an error message, if it occurred). The module must be
called within each sample period, although it waits if it is called too early. In buffered mode,
several input and output blocks may be used, and the generated Mex module exchanges matrices
with several columns of data. That data is buffered inside the module, and actual hardware IO
is handled by a separate thread, thus decoupling matrix IO streams from hardware sample IO
streams.

4.1 Signals

A signal is written by exactly one block, and is used by one or more other blocks. Cycles in
signals are not allowed, a signal cannot (directly or indirectly) attach to the block that writes
the signal.

Each signal has a unique name. Signals that don’t leave the computer (for example a signal
that connects a filter block output with a trigger block input) use a single word as name. Any
word will do as long as it is unique, although it is recommended to use a word that has a useful
meaning about the purpose of the signal.

Signals connected to the hardware have names that point out exactly what it connects to.
For example, the signal named el1014[0]:din.0 is connected to the first el1014 box. It reads
the din port (digital input), bit number 0 (the lowest bit). If a port does not have bits, or you
are not interested in single bits (that is, you want all of them), drop the .0 part.

Currently known hardware IO boxes are ebox, el1004, el1008, el1014, el1018, el1819,
el2004, el2008, el2809, el3102, el3104, el4038, el4132, el4134, el5002, el5101, and

3



el5152. Currently known port-types are din (digital input), ain (analogue input), enc (en-
coder/counter input), dout (digital output), aout (analogue output), and pwm (pulse width
modulator). If a box has several of the same type of ports, an index number is appended, like
aout0 (first analogue output of the box), aout1 (second analogue output of the box), etc. Only
the digital input and digital output port types have bits that can be selected.

In case you don’t know or don’t care what box is being used for a signal to a port, it is
also allowed to drop the box part. For example, the signal named ‘enc[3]’ connects to encoder
number three, the fourth available encoder input in the system (unlike MatLab, electronics uses
0-based numbering).

Note: At the time of writing, the acqgen program does not have knowledge about the port
types of each type of hardware box. This may lead to failures in finding a source or a destination
for hardware signals while using the generated MatLab module.

4.2 Blocks

The general notion of a block is a piece of functionality that takes signals and parameter values
as input, and produces output to other signals, for example

filtered = filter(ain[0], weights=[0.1, 0.7]);

This filter block takes samples from input signal ain[0], applies the filter function to the
samples using the weights parameter value [0.1, 0.7], and writes the results to the filtered

signal. (Details about filter blocks are in Section 4.2.4.)

The general pattern of a block is

〈output-signals〉 = 〈block-name〉(〈input-signals〉 , 〈parameter-values〉) ;

Below, each type of block is discussed in more detail. The config block is a special case, it
does not attach to signals, and configures the general properties of the acquisition or control
program.

4.2.1 config block

The config block is obligatory. It does not participate in transfer of signal values, but it handles
configuration of several properties of the generated module. The first part of the parameters of
the config block are

4



Parameter Type Description
nic string Name of the ethernet port used for EtherCAT ,

for example "eth3".
memsize integer Number of bytes memory available for storing data.

Default value is 262144 bytes (256 KByte).
template string Name of the file to use as module source template.

(Only useful for debugging or advanced experiments.)
buffered boolean Whether to generate a buffered acquisition module.

Default value is true.
default input buffersize integer Default number of samples in a buffer in an input

block.
default input buffercount integer Default number of buffers in an input block.
default prewrite real Default prewrite value for an input block.
default output buffersize integer Default number of samples in a buffer in an output

block.
default output buffercount integer Default number of buffers in an output block.
default input synchronous bool Global parameter whether to return a block input data

on each call. Default value is false.
frequency real Number of IO operations per second.
delay nano integer Number of nano-seconds between two IO operations.
delay micro integer Number of micro-seconds between two IO operations.
delay milli integer Number of milli-seconds between two IO operations.

The default buffer size, count, and prewrite values are convenience parameters, they can be
overridden in each input and output block. In the current setup however, there is not much
reason to do so, in particular for the buffer sizes. Everything runs at the same delay nano rate,
the generated module blocks until it has delivered all its output data, and picks up at most one
input data block. Using different buffer sizes with different blocks thus complicates usage of the
generated module.

The default input synchronous parameter is the global default that enforces a matrix with
samples is returned for each input block on each call. Each input block may override this value.
The synchronous parameter of the input block explains the use and effects in more detail.

The various speed parameters all set the same value, but use different base units. The de-
lay nano is the primitive used by the generated module, all other speed parameters are converted
to it. Default speed is 10000000 nano-seconds, which is 100Hz.

In addition, the config block has a large number of parameters to tune how the software is
built. They exist for advanced C code experiments and debugging purposes, and need not be
specified otherwise.

5



Parameter Type Description
matlab base string Base-path of MatLab, default value is

"/usr/local/MATLAB/<newest>".
matlab mex string Path to the Mex executable, default value is

"<matlab base>/bin/mex".
soem base string Base path to the installed SOEM library.
soem lib string Path to the library file of the SOEM library, default value is

"<soem base>/lib/libsoem.a".
soem lflags string Link-flags for the SOEM library, default value is derived from

"<soem lib>".
soem include string Path to the SOEM include directory, default value is

"<soem base>/soem/include".
compiler string Name of the C compiler executable, default value is

"<matlab mex>".
acqgen dir string Path to the acqgen runtime source files.
acqgen sources string Files to include in the acqgen runtime. If acqgen dir is specified,

the path is prefixed to each file.
cflags string C compilation flags, valid value depends on the used compiler.

Default value is "-I<acqgen source> -I<soem include>".
lflags string C linking flags, valid value depends on the used compiler. Default

value is "<soem lflags> -lpthread -lm".
The compiler parameter defines the C compiler being used, which by default points at the

newest Mex program that can be found. This can be tuned by parameter the matlab base

or matlab mex parameters. The SOEM library being used is decided with the soem include

directory (for finding the .h files of SOEM ), and the soem lib path to the library file. Both use
the soem base parameter. By changing its value, you can use your own SOEM version. Last
but not least, the runtime source code being compiled with the generated C file is given by the
acqgen dir and/or acqgen files parameters. Setting them to your own C code files allows
advanced C code experiments. Likely, you then also need to modify the template parameter.

4.2.2 input block

The input block takes one or more input signals, and does not produce any output signal. Instead
it groups the signals into matrices, and produces a stream of matrices with data samples of the
signals for the MatLab application. Each signal gets its own row (same order as specified in the
block), each column has data values at a particular point in time for all signals.

Its parameters are

6



Parameter Type Description
index integer Cellarray index of the data output of the generated

MatLab module in buffered mode.
buffersize integer Number of samples (number of columns) of one returned matrix. If

not specified, the default input buffersize of the Configure block
is used.

buffercount integer Number of buffers used for the input block. If not specified, the
default input buffercount of the Configure block is used.

enable signal Signal controlling whether samples are stored.
prewrite real Number of samples to store before an up-flank of the enable signal

is detected. If not specified, the default prewrite of the Configure
block is used.

synchronous bool Enable synchronous MatLab operation.

Internally in the module, samples are buffered (in buffered mode) up to buffersize samples
for each signal, before being given to the application. (Often matrices are completely filled, but
that need not always be the case). A filled buffer is copied in its entirety to a matrix which is then
passed back to the user for further (batch) processing. Larger buffersize thus generally means
larger batches of samples. The buffercount parameter controls the number of buffers used for
one input. In buffered mode, at least one buffer is required (and two buffers are recommended).
Even larger values of buffercount can be used to deal with larger variations in processing times.

The enable signal can be used to control storage of samples. If the attached signal is higher
or equal than 0.5, storage is enabled, else it is disabled. Without enable signal, storage is always
enabled. Although the signal may have any source, the usual approach is to read the output of
a trigger block, which in turn uses a filtered hardware input signal. The input block does not
provide control how many samples are taken, it follows the value of the enable signal (that is,
configure the trigger block for controlling how many samples are taken).

The prewrite parameter defines how many samples are (attempted to be) written before the
enable signal rises to or above 0.5. The parameter value may be a fraction of the buffer size
(for example, a value of 0.2 means 20% of the buffer size), or it may be the number of samples
to use (less than the size of the buffer). This is useful if the moment of the enable signal is very
close to the part of the signal that is of interest. There is however no guarantee on the number
of prewritten samples. If the enable signal drops below the 0.5 for a few cycles, there may be
insufficient time to collect enough samples while prewriting.

The synchronous parameter enables synchronous exchange of MatLab matrices on each call,
for this block. Enabling this parameter causes the MatLab function to wait until a matrix with
sample data becomes available from this input block. The effect is that one MatLab call gives
data to output blocks, and then always returns samples from this input block (and any other
inputs that have the synchronous parameter enabled). However, an input block gives data
after its buffer is filled. While waiting for that, the output blocks consume the provided data
(assuming equal buffer sizes). As a result, to avoid starvation of the output, the next call to
the generated module must be made within the sample period. Not enabling the synchronous

parameter means some MatLab calls may not return sample data from input blocks. On the
other hand, the MatLab call returns earlier in this case. This time can be used to compute the
next matrix of output data, or perform post-processing on previously received samples.

4.2.3 output block

The output block does the reverse of the input block. It accepts matrices with sample values
from the MatLab application, and outputs the samples to its output signals, one column at a

7



time. The block has no input signals. There is also no enable signal, data is always sent. The
parameters of the output block are

Parameter Type Description
index integer Cellarray index of the data input of the MatLab

module in buffered mode.
buffersize integer Number of samples (number of columns) of one buffer. If not

specified, the default output buffersize of the Configure block
is used.

buffercount integer Number of buffers used for the output block. If not specified, the
default output buffercount of the Configure block is used.

Like in the input block, each output signal has a row (in the same order as specified). The
buffersize defines the number of available columns in a buffer. It is allowed to provide less
columns with data, as long as there is at least one column. Note however that supplying less
columns than available wastes buffer space, and generally decreases time that is available for
providing the next matrix with data.

The buffercount parameter has the same function as with the input block. It defines the
number of buffers available for ‘writing ahead’. In buffered mode, there must be at least one
buffer (two buffers are recommended).

4.2.4 filter block

A filter block takes one input signal, and produces one output signal. The latter is computed
from the weighted sum of the last N samples of the input signal. By using carefully computed
weights, many different filters can be constructed.

The filter block has only one parameter, the weights of the samples.

Parameter Type Description
weights list of reals Multiplication factors applied to the last samples.

The first weight is applied to the most recent sample, the second weight to the second most
recent sample, and so on. The number of samples used in the sum is equal to the number of
weights of the weights parameter.

4.2.5 trigger block

The trigger block converts its single input signal to an output signal that is either 0 or 1. The
normal state of the output is 0. When the input signal varies in the specified way, the trigger
fires and the output changes to 1. It keeps that value for a given number of sample periods, and
then reverts back to 0.

The parameters of the trigger block are

Parameter Type Description
policy text Direction of input signal change that is monitored while crossing

the given value.
value real Input signal value being monitored.
interval real Length of the 1 output signal interval, in nano-seconds.
count integer Number of sample periods of the 1 output signal interval.

The trigger continuously compares the input signal against the reference value given by the
value parameter. The policy parameter decides how the input signal must reach or cross the
reference value. If the policy is ‘up’, the trigger fires when the reference signal rises to or above
the reference value. The ‘down’ policy fires the trigger if the input signal decreases from at or

8



above, to below the reference signal. Finally, the ‘value’ policy fires the trigger in both cases,
the input signal has to pass the reference value in either direction.

Both the interval and the count parameters define the length of the 1 value of the output
signal, but in different base units. Only one of them should be stated.

4.2.6 function block

A function block generates a known signal, and sends it to the output. Its primary use is to
generate such a signal at an hardware output, without having to create and send your own
samples.

Currently, three signal shapes are available, a sine, a block signal, and a triangle signal. Each
of them is configurable to provide a wide variety of signals.

Sine function

The sine function swings back and forth around a center base signal, at a given amplitude, with
a given period. Its parameters are

Parameter Type Description
shape string Fixed value sine

frequency real Length of the period, in Hz.
base real Value of the center value.
amplitude real Maximal deviation from the base value.
max samples integer Maximum number of samples that may be computed.

The output of the sine function is pre-computed to improve performance, sampling the sine
function on the global hardware sample period. To improve accuracy, the sine function may be
sampled for several periods. The max samples parameter control the upper limit on the number
of samples that can be used to represent the sine function.

Block function

The block function periodically instantaneously switches between the high level and the low level
output. A common use of this function is to produce a pulse signal.

The parameters of the block function are

Parameter Type Description
shape string Fixed value block

frequency real Length of the period, in Hz.
duty cycle real Fraction of the period to emit the high level value.
low real Value to produce in low level output.
high real Value to produce in high level output.

Triangle function

The triangle function generates a signal that alternates between linearly increasing to the high
level, and linearly decreasing to the low level. A common use of this function is to produce a
saw tooth signal.

The parameters of the triangle function are

9



Parameter Type Description
shape string Fixed value triangle

frequency real Length of the period, in Hz.
peak at real Fraction of the period where the signal is at its highest value.
low real Lowest possible value of the function.
high real Highest possible value of the function.

At the start and the end of a period, the signal is at the lowest value. At the peak at fraction
of the period, the signal is at its highest value.

5 Using the generated module

If you skipped Section 4 so far, you may want to go back and read the general description part
first to learn about modes, signals, and the general idea behind blocks, in particular input and
output blocks.

The generated module is used by simply calling it with matrices containing data values to
send out. After the call the module returns samples that it received. The first call will take
additional time to setup EtherCAT , but otherwise, the data is processed normally.

The signature of the function is in normal operation is

[errors, recvdata] = Function(senddata)

In unbuffered mode, senddata is a N × 1 column matrix carrying one sample for each of the N
output signals. The returned error is a string containing an error message if an error was found.
The recvdata column matrix of size M × 1, containing a sample value for all M input signals.

In buffered mode, the function signature changes to one cell matrix in and two cell matrices
out with error messages and samples.

The senddata cell matrix contain matrices with more samples for an output block. For
example, to send output data to an output defined as

aout[0], aout[1] = output(buffersize=5, buffercount=2, index=3);

a 2×5 matrix (5 samples for each output row) should be made, and assigned to cell index number
3, like

senddata{3} = [1, 2; 3, 4; 5, 6; 7, 8; 9, 0];

Less samples than the specified buffersize is allowed but not recommended.
During or after the Function call, the analogue outputs first get the first column values, then

the second column values, etc. Note that the buffercount of an input or output block has no
effect on the matrix format and size.

The receiving side works in the same way, except the data is returned in the recvdata cell
array. Each row represents an input point, in the order listed with the input block. Each column
contains data samples of all sensors at a single point in time. The recvdata cell matrix uses the
index numbers provided in the input blocks.

The errors return value is a cell array with error messages that occurred before or during
the function call. The index used in the cell array indicates which input or output block had the
error, if the index is larger than any index block number, a block could not be decided. (That
is, it means a general error has occurred, rather than in a specific input or output stream.)

A call to the generated module blocks until it has delivered all senddata. It also waits for a
block of received samples from each input block that has its synchronous parameter set. Finally,

10



if available, it picks up one block of received samples from the input blocks that do not have the
synchronous parameter set.

The important notion here is that output data and input data must be kept in balance. Doing
too much at one side will starve or overrun the other side. This becomes more complicated if
various buffer sizes are used.

5.1 Stopping data acquisition

In buffered mode, a separate thread is running, performing the actual input and output. This
thread continues to run until you close MatLab, or you tell it to stop. The latter is done by
calling the Function without any arguments. The module closes down, and returns nothing
from the call.

6 Installation

The acqgen program is designed to run at a Linux system, such as Ubuntu LTS 16.04, but
others may also work.

Software required for installing acqgen:

• The SOEM EtherCAT master software, source available from
https://github.com/OpenEtherCATsociety/SOEM .

• CMake (available from the Ubuntu cmake package).

• gcc (available from the Ubuntu gcc package, includes pthreads library).

• make (available from the Ubuntu make package).

• Python3 (used Python 3.5,1, available from the python3 package).

• The MatLab software (used Matlab R2015a but newer should work too), available locally
from a ICT helpdesk.

The acqgen software depends on both MatLab and SOEM EtherCAT, so these need to be
installed first. Matlab provides its own installation instructions, and installs by default in a
directory in /usr/local/MATLAB. If you install it elsewhere, adjust the MatLab paths as needed.
The SOEM EtherCAT software needs some special handling to make it useful for dynamic
linking, this is explained in the next section.

6.1 Installing SOEM EtherCAT master software

The SOEM software comes as C source code, and must be compiled using the -fPIC flag. Steps
to do this:

1. Download source from https://github.com/OpenEtherCATsociety/SOEM, as source down-
load or by cloning the git repository. Here, revision fb975cbc70bde723a178936ddb8c3b1c8c192c39

was used (committed at March 31, 2017), but newer likely works too.

2. Unpack the software to a source tree from the archive, if required. Sub-directory SOEM is
assumed to hold all files.

11



3. The software uses CMake to generate its out-of-source build files. Make a build directory
for it, by entering mkdir build from a terminal. Also, enter that directory using cd build

.

4. To generate the build files for SOEM, use the following CMake command:

cmake -DCMAKE_INSTALL_PREFIX=/path/to/installed/soem \

-DCMAKE_C_COMPILER:FILEPATH=gcc \

-DCMAKE_C_FLAGS:STRING=-fPIC \

../SOEM

The command takes three -D options, where the /path/to/installed/soem is the desti-
nation directory for the SOEM library (replace it with your own preferred destination).
The fourth line ../SOEM points to the SOEM source directory that was just downloaded
and unpacked (path changes if you make the build directory elsewhere).

The backslashes at the end of the lines are not part of the command, they denote that
the command continues on the next line. The command can also be typed at a single line,
without the backslashes.

5. If all is well, the above command finds all the required software for the SOEM software,
and it generates a Makefile in the local (build) directory. Now build the software by
typing make.

6. Finally, the created software should be installed by typing make install, which results in
a populated /path/to/installed/soem directory.

7. To clean up, the build directory can be deleted:

cd .. # Leave the ’build’ directory.

rm -r build

6.2 Installing acqgen software

The acqgen software can be installed using the supplied install.py Python3 script. It comes
with online help (type ./install.py --help). The normal command-line to install is a com-
mand like:

./install.py --install-prefix=/path/to/installed/acqgen \

--soem=base=/path/to/installed/soem

where /path/to/installed/acqgen is the destination of the acqgen software. Replace it with
your own preferred location, by default it uses /usr/local. The /path/to/installed/soem is
the path where SOEM was installed previously (that is, the CMAKE INSTALL PREFIX value in the
previous section).

The installation doesn’t say anything. Afterwards, there should be a bin/acqgen Python
script installed in the destination path of acqgen, and a Python code library in share/acqgen.
The installer also allows to specify the path of each of these, in case your system uses a different
file system layout.

12


