Minutes 2019-06-03

Performed work

- 1. Avoidance (Bram)
 - a. Full-view avoidance
 - b. Issues with stopping PICO inside door
- 2. Avoidance (Marcel)
 - a. Updated algorithm with more failsafes
- 3. Localization (Jeroen & Martijn)
 - a. Very difficult to compute
 - b. Worked, most of the time.
- 4. Localization (Jeroen & Bram)
 - a. Range-based localization
 - b. Too many matches? Perhaps multiple good fits?
 - c. Requires map fitting with results.
- 5. Path planning (Ruben)
 - a. Now works with orientation to next point
 - i. More priority should be put on rotation action
 - b. Map walls are blown up per-line
- 6. Trajectory cycling (Ruben & Bram)
 - a. Cycles to next point when near.

Questions for Bob

- 1. How to easily create .json map?
 - a. Use snap-to-grid in Inkscape with blocks, manually input to .json
- 2. What's a good alternative for this localization?
 - a. Our methods seems fine. Door finding algorithm might also be used.
- 3. What localization algorithm would you recommend?
 - a. Particle filters are often used, but can easily fail.

To do

- 1. Finish localization (Bram & Jeroen)
 - a. Finetune algorithm
 - b. Reposition map
- 2. Compare avoidance algorithms and choose most suitable (Marcel & Ruben)
- 3. Finetune dynamic obstacle avoidance (Marcel & Ruben)
 - a. Fix stopping in doors
 - b. Recognize locking situation
- 4. Map updating (Martijn & Marcel/Ruben)
 - a. Add obstacles to obstacle map
 - b. Remove obstacles that aren't present anymore
 - c. Add visualization w/ different color
- 5. Finetune control (Marcel/Ruben)
 - a. Rotation priority
- 6. Presentation (Bram)

- a. Assumptions for localization
- b. State machine
- c. Localization
- d. Planning
- e. Avoidance
- f. World model? (PLAATJE)
- 7. Update Wiki (Jeroen)
- 8. Recognize moving objects (Later)

PICO Test 2019-06-05

- 1. Localization robustness
- 2. Dynamic obstacle avoidance robustness
 - a. Move through doors
 - b. Move through hallways
 - c. Avoid moving objects
- 3. Static obstacle avoidance
 - a. Recognize issue
 - b. Plan way around
- 4. Limits of system (later)

Agreements

- 1. Parameter tuning
 - a. Create TUNE: label on tunable parameters